Study on efficacy of moringa stenopetala seed oil extract for antimicrobial activities on textile materials

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gemeda Gebino ◽  
Gezu Ketema ◽  
Adina Fenta ◽  
Gideon Kipchirchir Rotich ◽  
Ayalew Debebe

Purpose The purpose of this study was to evaluate the extract of Moringa stenopetala seed oil, by organic solvents (methanol and hexane), for its efficacy against microbial activity on cotton fabrics. The selected microbes for the study were two types of bacteria which are Gram-positive (S. aureus) and Gram-negative (E. coli). Design/methodology/approach Two types of bacteria, Gram-positive (S. aureus) and Gram-negative (E. coli) were used. The extract was applied on fabrics at a concentration of 5, 10 and 15 g/L using the pad-dry-cure method and antibacterial activities verified by the bacterial-growth reduction method. The treated fabrics were evaluated for antimicrobial activity against the bacteria before and after 15 washing cycles. The extract was examined for molecular structural change using fourier transform infrared spectroscopy (FTIR) and physical properties of the fabric; tensile strength, elongation, air permeability, stiffness and wettability were evaluated. Findings Results showed treated fabrics reduces the growth of Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria from 77.6%–100% before wash and 45.8%–85.2% after wash for both extract concentrations. Comparing extracts, hexane extract reduces all bacteria growth than methanol extract for both extract concentrations while S. aureus was more susceptible to antimicrobial agents than E. coli at a lower concentration. As result, the tensile strength and air permeability were relatively lower than untreated ones without affecting the comfort properties of the fabric. Originality/value This study indicates that the Moringa stenopetala seed oil extract has a strong antimicrobial activity.

2018 ◽  
Vol 201 (8) ◽  
Author(s):  
Elizabeth Ward ◽  
Eun A Kim ◽  
Joseph Panushka ◽  
Tayson Botelho ◽  
Trevor Meyer ◽  
...  

ABSTRACTWhile the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied inEscherichia coliandSalmonella, less is known about the switch complex inBacillus subtilisor other Gram-positive species. Two component proteins (FliG and FliM) are shared betweenE. coliandB. subtilis, but in place of the protein FliN found inE. coli, theB. subtiliscomplex contains the larger protein FliY. Notably, inB. subtilisthe signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action inE. coli. Here, we have examined the architecture and function of the switch complex inB. subtilisusing targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, theB. subtilisswitch complex appears to be organized similarly to that inE. coli. The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that ofE. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences fromE. coliinvolve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCEFlagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex inBacillus subtilisor other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas inE. coliorSalmonellaCheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of theB. subtilisswitch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control inB. subtilisand other Gram-positive species.


2011 ◽  
Vol 8 (3) ◽  
pp. 1430-1437 ◽  
Author(s):  
S. S. Deo ◽  
F. Inam ◽  
R. P. Mahashabde

The antimicrobial activity of crude methanolic and aqueous extracts ofOcimum sanctumandOcimum kilimandsacharicumagainst gram positive, gram negative and antifungal activity was evaluated to find the zone of inhibition and to set a HPLC profile or fingerprint of these extracts. The crude methanolic extract ofOcimum sanctumshowed strong antimicrobial activity againstS.aureusandC. albicansand moderate activity againstE. coliandB. subtilis. The crude methanolic extract ofOcimum kilimandsacharicumshowed strong antimicrobial activity againstS. aureus, E. coliandC. albicansat higher concentration, same as that shown by the standard forC. albicans. It showed moderate activity againstB. subtilis. The crude aqueous extracts of Ocimum sanctum showed strong antimicrobial activity againstS.aureusand moderate against others. Whereas the crude aqueous extracts ofOcimum kilimandsacharicumshowed moderate activity against the gram positive and gram negative organisms and strong activity againstC. albicansat higher concentration, same as that shown by the standard forC. albicans.


2020 ◽  
Vol 49 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Hatem E. Gaffer ◽  
Ismail I. Althagafi

Purpose The purpose of this paper is to synthesize some new azobenzene dyestuffs clubbed with thiazolidinone moiety and their solicitation in dyeing polyester fabrics representing their antibacterial evaluation. Design/methodology/approach Herein, the authors report the synthesis of new thiazolidinone moiety after the coupling of diazotized 4-aminoacetophenone with resorcinol. The newly synthesized dyes were characterized by IR, elemental analysis, mass spectroscopy and proton nuclear magnetic resonance (1H NMR) spectral studies. The characteristics of dyeing of these dyestuffs were evaluated at optimum conditions. Concurrent with dyeing of polyester fabric for synthesized dyes with their antibacterial activity was estimated. Antimicrobial activity of the dyed fabrics at different concentrations was evaluated against gram-positive and gram-negative bacteria. Findings Synthesized azobenzene dyestuffs clubbed with thiazolidinone dyes were applied on polyester fabrics. It was remarked that the modified dyes exhibited better colourfastness properties. Furthermore, the synthesized dyes revealed antimicrobial activity against gram-positive and gram-negative bacteria. Research limitations/implications The synthesized azobenzene dyes for polyester dyeing were not bore earlier. Practical implications The azobenzene dyes were accountable for giving improved colourfastness properties on polyester fabrics. Social implications The synthesized azobenzene derivatives are sensibly expensive and applicable dyes accompanied with good antimicrobial and anticancer activities. Originality/value A common process could be affording textiles of colour and antibacterial assets. The newly synthesized dyes containing thiazolidinone moieties with azobenzene coupler showed interesting disperse colourant for polyester with good antibacterial activity.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
P. C. Nagajyothi ◽  
K. D. Lee

The eco-friendly synthesis of nanoparticles through various biological means helps to explore various plants for their ability to synthesize silver nanoparticles (AgNPs). Here we have synthesized AgNPs by using rhizome extract ofDioscorea batatasat as well as room temperature (). AgNPs were characterized under UV-vis spectrophotometer, SEM, FTIR, XRD, and EDX. The antimicrobial activity of AgNPs was evaluated on gram positive (B. substilisandS. aureus), gram negative (E. coli), and fungi (S. cerivisaeandC. albicans). At room temperature,S. cerivisaeandC. albicanswere found to be more susceptible to AgNPs than at .


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Nylev Vargas-Cruz ◽  
Ruth A. Reitzel ◽  
Joel Rosenblatt ◽  
Mohamed Jamal ◽  
Ariel D. Szvalb ◽  
...  

ABSTRACT Percutaneous nephrostomy (PCN) catheters are the primary method for draining ureters obstructed by malignancy and preventing a decline of renal function. However, PCN catheter-related infections, such as pyelonephritis and urosepsis, remain a significant concern. Currently, no antimicrobial PCN catheters are available for preventing infection complications. Vascular catheters impregnated with minocycline-rifampin (M/R) and M/R with chlorhexidine coating (M/R plus CHD) have previously demonstrated antimicrobial activity. Therefore, in this study, we examined whether these combinations could be applied to PCN catheters and effectively inhibit biofilm formation by common uropathogens. An in vitro biofilm colonization model was used to assess the antimicrobial efficacy of M/R and M/R-plus-CHD PCN catheters against nine common multidrug-resistant Gram-positive and Gram-negative uropathogens as well as Candida glabrata and Candida albicans. Experimental catheters were also assessed for durability of antimicrobial activity for up 3 weeks. PCN catheters coated with M/R plus CHD completely inhibited biofilm formation for up to 3 weeks for all the organisms tested. The reduction in colonization compared to uncoated PCN catheters was significant for all Gram-positive, Gram-negative, and fungal organisms (P < 0.05). M/R-plus-CHD PCN catheters also produced significant reductions in biofilm colonization relative to M/R PCN catheters for Enterobacter spp., Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, C. glabrata, and C. albicans (P < 0.05). M/R-plus-CHD PCN catheters proved to be highly efficacious in preventing biofilm colonization when exposed to multidrug-resistant pathogens common in PCN catheter-associated pyelonephritis. M/R-plus-CHD PCN catheters warrant evaluation in a clinical setting to assess their ability to prevent clinically relevant nephrostomy infections.


Author(s):  
Nisheeth C. Desai ◽  
Darshita V. Vaja

We have synthesized novel series of N-(1-(2-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)ethylidene)arylaniline and their derivatives. The structures of synthesized compounds were well characterized by spectroscopic techniques. Antimicrobial activity of the newly synthesized derivatives was evaluated against gram positive (S. aureus and S. pyogenes), gram negative bacteria (E. coli and P. aeruginosa), and strains of fungi (C. albicans, A. niger and A. clavatus). Among the screened derivatives 5c, 5f, 5i, 5l and 5t demonstrated superior antimicrobial activity against microbial strains.


2010 ◽  
Vol 7 (4) ◽  
pp. 1190-1195 ◽  
Author(s):  
Vertika Gautam ◽  
Viney Chawla ◽  
Pankaj k. Sonar ◽  
Shailendra K. Saraf

A series of 1, 3, 5-trisubustituted pyrazole derivatives were synthesized and screened for antimicrobial activity. The compounds(2j-o)were evaluated against two gram-positive and two gram-negative bacteria and one fungus, at concentrations of 10 µg/mL and 50 µg/mL. The compounds were founds to be inactive againstP. aeruginosaandA. nigerbut exhibited moderate activity againstB. subtilis, E. coliandS. aureus. It can be concluded that the newly synthesized compounds possess promising antimicrobial activity.


2017 ◽  
Vol 200 (1) ◽  
Author(s):  
Gairika Ghosh ◽  
Jayavardhana Reddy ◽  
Susmit Sambhare ◽  
Ranjan Sen

ABSTRACTRho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibitsEscherichia coliRho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, includingMycobacterium smegmatis,Mycobacterium bovis,Mycobacterium tuberculosis,Xanthomonas campestris,Xanthomonas oryzae,Corynebacterium glutamicum,Vibrio cholerae,Salmonella enterica, andPseudomonas syringae. The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from theE. colitranscription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins.In vivopulldown assays revealed direct binding of Psu with many of these Rho proteins.In vivoexpression ofpsuinduced killing ofM. smegmatis,M. bovis,X. campestris, andE. coliexpressingS. entericaRho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the “universal” inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions.IMPORTANCEBacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of theE. colitranscription terminator Rho. Here we show that apart from antagonizingE. coliRho, Psu is able to inhibit Rho proteins from various phylogenetically unrelated Gram-negative and Gram-positive pathogens. Upon binding to these Rho proteins, Psu inhibited them by affecting their ATPase and RNA release functions. The expression of Psuin vivokills various pathogens, such asMycobacteriumandXanthomonasspecies. Hence, Psu could be useful for identifying peptide sequences with anti-Rho activities and might constitute part of synergistic antibiotic treatment against pathogens.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Mayandi Venkatesh ◽  
Veluchamy Amutha Barathi ◽  
Eunice Tze Leng Goh ◽  
Raditya Anggara ◽  
Mobashar Hussain Urf Turabe Fazil ◽  
...  

ABSTRACT The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Michał Dmowski ◽  
Izabela Kern-Zdanowicz

ABSTRACT Conjugative plasmids are the main players in horizontal gene transfer in Gram-negative bacteria. DNA transfer tools constructed on the basis of such plasmids enable gene manipulation even in strains of clinical or environmental origin, which are often difficult to work with. The conjugation system of the IncM plasmid pCTX-M3 isolated from a clinical strain of Citrobacter freundii has been shown to enable efficient mobilization of oriTpCTX-M3-bearing plasmids into a broad range of hosts comprising Alpha-, Beta-, and Gammaproteobacteria. We constructed a helper plasmid, pMOBS, mediating such mobilization with an efficiency up to 1,000-fold higher than that achieved with native pCTX-M3. We also constructed Escherichia coli donor strains with chromosome-integrated conjugative transfer genes: S14 and S15, devoid of one putative regulator (orf35) of the pCTX-M3 tra genes, and S25 and S26, devoid of two putative regulators (orf35 and orf36) of the pCTX-M3 tra genes. Strains S14 and S15 and strains S25 and S26 are, respectively, up to 100 and 1,000 times more efficient in mobilization than pCTX-M3. Moreover, they also enable plasmid mobilization into the Gram-positive bacteria Bacillus subtilis and Lactococcus lactis. Additionally, the constructed E. coli strains carried no antibiotic resistance genes that are present in pCTX-M3 to facilitate manipulations with antibiotic-resistant recipient strains, such as those of clinical origin. To demonstrate possible application of the constructed tool, an antibacterial conjugation-based system was designed. Strain S26 was used for introduction of a mobilizable plasmid coding for a toxin, resulting in the elimination of over 90% of recipient E. coli cells. IMPORTANCE The conjugation of donor and recipient bacterial cells resulting in conjugative transfer of mobilizable plasmids is the preferred method enabling the introduction of DNA into strains for which other transfer methods are difficult to establish (e.g., clinical strains). We have constructed E. coli strains carrying the conjugation system of the IncM plasmid pCTX-M3 integrated into the chromosome. To increase the mobilization efficiency up to 1,000-fold, two putative regulators of this system, orf35 and orf36, were disabled. The constructed strains broaden the repertoire of tools for the introduction of DNA into the Gram-negative Alpha-, Beta-, and Gammaproteobacteria, as well as into Gram-positive bacteria such as Bacillus subtilis and Lactococcus lactis. The antibacterial procedure based on conjugation with the use of the orf35- and orf36-deficient strain lowered the recipient cell number by over 90% owing to the mobilizable plasmid-encoded toxin.


Sign in / Sign up

Export Citation Format

Share Document