Wear performance of Al-TiC composite at elevated temperature

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Eshan Agrawal ◽  
Vinod Tungikar

Purpose Aluminium matrix composites are subjected to wear as well as higher temperature applications such as pistons, cylinder heads and blocks for car engines. Therefore, it is important to evaluate the performance of aluminium metal matrix composite at elevated temperature. Design/methodology/approach In the present work wear performance of Al-TiC composite with 7.5% reinforcement of TiC powder is carried out at elevated temperature. The composite specimens are prepared with the help of centrifugal casting method to get the large segregation of reinforcement on the outer layer of the composite which is subjected to wear. Taguchi method is used for preparing design of experiments. Findings The wear test is performed on DUCOM pin on disc setup having the heating chamber facility. The results of wear test are analysed with the help of MINITAB 19 software. The results show that temperature has dominant effect on the wear rate. The mathematical model through regression is predicted for wear rate and coefficient of friction. The study of worn-out surface is performed with the help of scanning electron microscope. The micrographs show that the type of wear is changes from abrasive to severe wear and some delamination. Originality/value The experiments are conducted as per ASTM standards. The results give the mathematical equation for wear rate and coefficient of friction at elevated temperatures.

2020 ◽  
Vol 37 ◽  
pp. 37-45
Author(s):  
Eshan S. Agrawal ◽  
Vinod B. Tungikar

TiC particles are reinforced with Al 7075 to develop metal matrix composite. Special purpose die is fabricated for centrifugal casting machine for the preparation of composite material. The tribological properties such as wear rate and coefficient of friction are determined by using pin on disc wear testing machine. Weight percentage of TiC, applied load, sliding distance are considered as parameters for the wear test. The results show that the wear resistance of the developed composite increases with increase of TiC percentage. Wear rate of Al-TiC composite is observed to be reduced by 11%, 31% and 42% with increasing percentage of TiC by 2.5%, 5% and 7.5% respectively. SEM and EDS analysis are used for morphological study of the worn surfaces of composite. Keywords: Composites, Al-TiC, Wear, Coefficient of Friction (CoF), SEM


2020 ◽  
Vol 26 (4) ◽  
pp. 765-776 ◽  
Author(s):  
Gurminder Singh ◽  
Pulak Mohan Pandey

Purpose The purpose of this study is to study the mechanical, tribological and electrical properties of the copper-graphene (Cu-Gn) composites fabricated by a novel rapid tooling technique consist of three-dimensional printing and ultrasonic-assisted pressureless sintering (UAPS). Design/methodology/approach Four different Cu-Gn compositions with 0.25, 0.5, 1 and 1.5 per cent of graphene were fabricated using an amalgamation of three-dimensional printing and UAPS. The polymer 3d printed parts were used to prepare mould cavity and later the UAPS process was used to sinter Cu-Gn powder to acquire free-form shape. The density, hardness, wear rate, coefficient of friction and electrical conductivity were evaluated for the different compositions of graphene and compared with the pure copper. Besides, the comparison was performed with the conventional method. Findings Cu-Gn composites revealed excellent wear properties due to higher hardness, and the lubrication provided by the graphene. The electrical conductivity of the fabricated Cu-Gn composites started increasing initially but decreased afterwards with increasing the content of graphene. The UAPS fabricated composites outperformed the conventional method manufactured samples with better properties such as density, hardness, wear rate, coefficient of friction and electrical conductivity due to homogeneous mixing of metal particles and graphene. Originality/value The fabrication of Cu-Gn composite freeform shapes was found to be difficult using conventional methods. The novel technique using a combination of polymer three-dimensional printing and UAPS as rapid tooling was introduced for the fabrication of freeform shapes of Cu-Gn composites and mechanical, tribological and electrical properties were studied. The method can be used to fabricate optimized complex Cu-Gn structures with improved wear and electrical applications.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


2020 ◽  
Vol 72 (9) ◽  
pp. 1109-1116
Author(s):  
Crislaine da Cruz ◽  
Ivan Mathias ◽  
Mariza Veiga Senk ◽  
Gelson Biscaia de Souza ◽  
Francisco Carlos Serbena

Purpose Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural teeth. This study aims to investigate the tribological features of LS2 GC with crystalline volume fraction of 64% and different crystal sizes from 8 µm to 34 µm for different counterparts. Design/methodology/approach The tribological behavior was investigated using a pin-on-disc tribometer with alumina and tungsten carbide (WC) spheres, applied load of 5 N and sliding speed of 5 cm/s at normal conditions. The coefficient of friction was measured continuously up to 10,000 sliding cycles. The specific wear rate was calculated from tribological and profile measurements. The wear mechanism was investigated by surface morphology analysis. Findings The coefficient of friction during running-in varied from 0.8 to 1.0 for the alumina counterpart, because of severe wear. Afterwards, it reduced and reached a stationary regime, characterized by a mild wear regime and the formation of a tribolayer formed by the debris. For the WC counterpart, the coefficient of friction curves increased initially with sliding cycles up to a stationary regime. The samples tested against WC presented the lowest specific wear rate (k), and no variation of wear rate with crystal size was observed. For samples tested against the alumina, crystallization and crystal size increased the wear resistance. Originality/value This study evaluated the effect of different counterfaces on the tribological properties of the LS2 GC, an important glass-ceramic base for many dental prosthetics and dental restorations, discussing results in light of the contact mechanics. Different specific wear rates, wear regimes and dependence on the glass-ceramic microstructure were observed depending on the counterpart. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0352/


2016 ◽  
Vol 68 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Harun Mindivan

Purpose This study aims to investigate the microstructure and the abrasive wear features of the untreated and pack borided GGG 50 quality ductile iron under various working temperatures. Design/methodology/approach GGG 50 quality as-cast ductile iron samples were pack borided in Ekabor II powder at 900°C for 3 h, followed by furnace cooling. Structural characterization was made by optical microscopy. Mechanical characterization was made by hardness and pin-on-disc wear test. Pin-on-disc test was conducted on a 240-mesh Al2O3 abrasive paper at various temperatures in between 25 and 450°C. Findings Room temperature abrasive wear resistance of the borided ductile iron increased with an increase in its surface hardness. High-temperature abrasive wear resistances of the borided ductile iron linearly decreased with an increase in test temperature. However, the untreated ductile iron exhibited relatively high resistance to abrasion at a temperature of 150°C. Originality/value This study can be a practical reference and offers insight into the effects of boriding process on the increase of room temperature wear resistance. However, above 150°C, the untreated ductile iron exhibited similar abrasive wear performance as compared to the borided ductile iron.


2009 ◽  
Vol 83-86 ◽  
pp. 41-48 ◽  
Author(s):  
Amir Mahmoudi ◽  
Mohamad Esmailian

In this study, AISI H13 steel was plasma nitrided in two different atmospheres, containing 25%N2-75%H2 and 4%N2-96%H2 at a constant temperature of 530oC and 6h-holding time. Dry wear behavior of nitrided samples was determined with pin-on-disc method at 25oC and 500oC, under 10N and 30N loads. The results indicated that the nitrided steels, which had a thin multiple phases white layer (produced at 4%N2-96%H2 atmosphere), didn’t have any wear resistance in ambient and elevated temperatures. However, the nitrided steels, having thick single phase white layer (produced at 25%N2-75%H2 atmosphere), showed better wear resistance in ambient temperature than in elevated temperature.


2014 ◽  
Vol 66 (1) ◽  
pp. 100-105 ◽  
Author(s):  
Yan Yin ◽  
Jiusheng Bao ◽  
Lei Yang

Purpose – In order to improving the braking reliability and assuring the driving safety of automobiles, this paper aims at the wear performance and its online monitoring of its brake lining. Design/methodology/approach – The wear performance of the semimetal brake lining for automobiles was investigated on a self-made braking tester for disc brakes. Based on the experimental data, an intelligent forecasting model for the wear rate was established by the artificial neural network (ANN) technology. And by taking it as a core, an online braking wear monitoring system for automobiles was designed. Findings – It is shown that the wear rate rises obviously with the increasing of both initial braking velocity and braking pressure. By the contrast, the initial braking velocity affects the wear rate more seriously. The ANN model trained by the experimental data shows favorable capability for predicting of the wear rate. The big forecasting errors at high velocity and heavy load should be attributed to the jumping of the wear rate at this period. Based on the existed sensors and electronic control unit system of automobiles, the online braking wear monitoring system can be established easily by the ANN technology. Originality/value – A self-made braking tester for disc brakes was used to test the wear performance, which can simulate better the actual disc braking conditions than the standard pin-on-disc friction tester. An online braking wear monitoring system was designed to help improving the braking reliability and safety of automobiles.


Author(s):  
Pardeep Kumar Nagpal ◽  
Suresh Kumar ◽  
Ranvir Singh Panwar ◽  
J. D. Sharma ◽  
Neeru Singla ◽  
...  

In this study, an investigation on the influence of In-situ tribo-oxide-layer on non-lubricated tribological behaviours of LM27/SiCp composites was carried out at different applied loads. The variations in wear performance and microstructure of brake lining friction material (LM27) with the addition of different amounts and sizes of SiCp are explored. For this purpose, LM27/SiCp composite materials were manufactured by stir casting route varying the amount of particle reinforced from 3wt.% to 12wt.% with a different size range (fine: 1-20µm and coarse: 106-125µm). Non-lubricated dry wear tests of LM27/SiCp composites samples were trialled at different loads from 9.8N to 49N by using a pin-on-disc machine system. At a contact pressure of 0.2-1 MPa, LM27/SiCp composites with 12wt.% reinforcement showed a lower coefficient of friction than other composites. In-situ formation of oxide layers on the contact region of the specimen supports the self-lubrication during the wear test, which is responsible for better wear performance of LM27/SiCp composites. However, these study portraits that composite with 12wt. % fine size SiCp exhibits better wear performance in comparison to the other developed composites.


2020 ◽  
Vol 170 ◽  
pp. 01025
Author(s):  
Tushar Gadekar ◽  
Dinesh Kamble

Friction and wear in dynamic parts is the primary reason for energy loss in gearbox lubrication system and this can be optimized by utilizing modified lubricant. The tribological nature of gearbox system is critically affected by factors such as type of lubricant, loading & speed etc. In latest years, multiple advanced oil and modern tribological techniques & instruments have been utilized to investigate behaviour of oil like pin on disc, Fourball tester etc. This paper presents comparative investigation of oil blended with additive for two different conditions using prediction model & RSM. The design of experimentations has been conducted by using response surface methodology. The value of inputs parameters such as concentration, load & sliding velocity ranges from 0.5 to 5 %, 60 to 100 N and 0.65 to 1.5 m/s, respectively are utilized to evaluate the outcomes of coefficient of friction and specific wear rate. At the end results from Prediction equations are compared with experimental literature based outcomes to signify the effect of parameters like blend %, load & Sliding speed. The Coefficient of friction model showed 47.57 % more closer outcomes as compared to the Specific wear rate model for specific variation of unknown parameters for pin on disc setup in oil.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE). Design/methodology/approach In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed. Findings With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE. Research limitations/implications The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE. Practical implications The result may help to choose the appropriate content. Originality/value The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/


Sign in / Sign up

Export Citation Format

Share Document