A high-speed, low-power bipolar digital circuit for Gb/s LSI's: current mirror control logic

1997 ◽  
Vol 32 (2) ◽  
pp. 215-221 ◽  
Author(s):  
K. Kishine ◽  
Y. Kobayashi ◽  
H. Ichino
1995 ◽  
Vol 06 (01) ◽  
pp. 163-210 ◽  
Author(s):  
STEPHEN I. LONG

The performance of high speed digital integrated circuits, defined here as those requiring operation at high clock frequency, is generally more sensitive to material properties and process techniques than ICs used at lower frequencies. Obtaining high speed and low power concurrently is especially challenging. Circuit architectures must be selected for the device and application appropriately. This paper presents simple models for high speed digital IC performance and applies these to the FET and bipolar transistor. Heterojunction devices are compared with those using single or binary materials. Circuits for high speed SSI and low power VLSI applications are described, and their performance is surveyed.


2019 ◽  
Vol 17 (10) ◽  
pp. 826-831
Author(s):  
Vandana Shukla ◽  
O. P. Singh ◽  
G. R. Mishra ◽  
R. K. Tiwari

Low power high speed calculating devices are foremost requirement of this era. Moreover, multiplication is considered as the most vital part of any calculating system. Multiplication process is generally considered as the speed limiting process as it requires more time as compared to other basic arithmetic calculations. So, here we focus on multiplication calculation using vedic method. Moreover, Reversible realization of any digital circuit improves the performance of the system by reducing the power loss from it. Here, the concept of vedic multiplication and Reversible approach are combined to propose a 4-bit multiplier circuit with optimized performance parameters. Proposed design is also analyzed and compared with existing designs. This approach may be employed to propose other low loss devices.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Kannadasan K

Reversible logic circuits have drawn attention from a variety of fields, including nanotechnology, optical computing, quantum computing, and low-power CMOS design. Low-power and high-speed adder cells (like the BCD adder) are used in binary operation-based electronics. The most fundamental digital circuit activity is binary addition. It serves as a foundation for all subsequent mathematical operations. The main challenge today is to reduce the power consumption of adder circuits while maintaining excellent performance over a wide range of circuit layouts. Error detection in digital systems is aided by parity preservation. This article proposes a concept for a fault-tolerant parity- preserving BCD adder. To reduce power consumption and circuit quantum cost, the proposed method makes use of reversible logic gates like IG, FRG, and F2G. Comparing the proposed circuit to the current counterpart, it has fewer constant inputs and garbage outputting devices and is faster.


2005 ◽  
Vol 15 (03) ◽  
pp. 599-614 ◽  
Author(s):  
YUYU LIU ◽  
JINGUO QUAN ◽  
HUAZHONG YANG ◽  
HUI WANG

In this paper, a logic style that is becoming increasingly popular is presented, which is called MOS Current Mode Logic (MCML). MCML is a novel and useful logic style for high-speed, low-power and mixed-signal applications. Its high-speed switching, low supply voltage and reduced output voltage swing contribute to its high performance, low power dissipation, and low noise features. MCML circuits are compared to several other logic styles, such as conventional static CMOS, dynamic logic, and traditional emitter coupled logic (ECL) in terms of power, delay and common mode noise immunity. MCML circuits seem to be very promising in high-speed, low-power and mixed-signal digital circuit applications, such as portable electronic devices, gigahertz microprocessors, and optical transceivers.


2019 ◽  
Vol 7 (1) ◽  
pp. 24
Author(s):  
N. SURESH ◽  
K. S. SHAJI ◽  
KISHORE REDDY M. CHAITANYA ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document