scholarly journals Cross-polarization level in radiation from a microstrip dipole antenna

1988 ◽  
Vol 36 (9) ◽  
pp. 1197-1203 ◽  
Author(s):  
A. Hoorfar ◽  
K.C. Gupta ◽  
D.C. Chang
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Huang Jingjian ◽  
Zhang Xiaofa ◽  
Xie Shaoyi ◽  
Wu Weiwei ◽  
Yuan Naichang

The high cross-polarization of the microstrip integrated balun-fed printed dipole antenna cannot meet the demands of many engineering applications. This kind of antennas has high cross-polarization levels (about −20 dB). And we find that the high cross-polarization radiation is mainly produced by the microstrip integrated balun rather than the dipole itself. The very limited method to lower the cross-polarization level of this kind of antennas is to reduce the substrate thickness. In this paper, to improve the low cross-polarized performance, firstly, an equivalent model is presented to analyze the cross-polarization radiation. Secondly, a novel structure with low cross-polarization is proposed. The microstrip integrated balun is enclosed by a center slotted cavity. The E-field of the microstrip integrated balun is transformed parallel to the dipole arms by the slot, so the radiation of the cross-polarized component is suppressed. Measured results show that this structure can achieve a bandwidth wider than 40% while reducing the cross-polarization level to less than −35 dB within the frequency band.


Author(s):  
Yiran Da ◽  
Xiaoming Chen ◽  
Mengting Li ◽  
Zhenyuan Zhang ◽  
Azremi Abdullah Al-Hadi ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2448 ◽  
Author(s):  
Hongyu Shi ◽  
Luyi Wang ◽  
Mengran Zhao ◽  
Juan Chen ◽  
Anxue Zhang ◽  
...  

In this paper, metasurfaces with both cross-polarization conversion and vortex beam-generating are proposed. The proposed finite metasurface designs are able to change the polarization of incident electromagnetic (EM) waves to its cross-polarization. In addition, they also can modulate the incidences into beams carrying orbital angular momentum (OAM) with different orders ( l = + 1 , l = + 2 , l = − 1 and l = − 2 ) by applying corresponding transmission phase distribution schemes on the metasurface aperture. The generated vortex beams are at 5.14 GHz. The transmission loss is lower than 0.5 dB while the co-polarization level is −10 dB compared to the cross-polarization level. The measurement results confirmed the simulation results and verified the properties of the proposed designs.


Author(s):  
Houtong Qiu ◽  
Xue-Xia Yang ◽  
Meiling Li ◽  
Zixuan Yi

Abstract Based on a substrate integrated lens (SIL), a compact line source generator (LSG) for feeding continuous transverse stub (CTS) arrays with linear-polarized (LP) beam scanning and dual-polarized (DP) operations is presented in this paper. The SIL consists of metamaterial cells with different sizes being arranged as concentric annulus and is printed on the center surface of two substrate layers. The SIL can convert the cylindrical wave generated by the feed probe of SIW-horn to the planar wave for feeding the CTS array. This rotationally symmetric SIL can be used conveniently to design LSG for feeding CTS arrays with the continuous beam scanning and DP operations, which has been verified by the fabrications and measurements. By simply rotating the SIW-horn along the edge of SIL, the 10-element LP-CTS array obtains a measured beam scanning range of ±35° with the highest gain of 20.6 dBi. By setting two orthogonal SIW-horns at the edge of the proposed SIL, the nine-element DP-CTS array with orthogonal radiation stubs is excited. The DP array obtains the gain of 20.3 dBi at the center frequency with the isolation of 28 dB and the cross-polarization level <−25 dB.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1189 ◽  
Author(s):  
Anurag Singh ◽  
Sandip Vijay ◽  
Rudra Narayan Baral

In this paper, a low cross-polarization improved-gain rectangular patch antenna is presented. A patch-ground shorting pin with defected patch structure (DPS) is introduced to suppress the cross-polarization level. A High Reflective Frequency Selective Surface (HRFSS) superstrate is designed and placed over the proposed antenna at an optimized position to intensify the gain. To characterize the unit-cell of the superstrate, its transmission characteristics are extracted and discussed. Integration of the superstrate achieves a beam contraction resulting in a gain enhancement to 10.65 dBi. The proposed antenna has perfect broadside radiation with a cross-polarization level of below −30 dB in the entire half power beamwidth. The prototype of the antenna exhibits good agreement between experimental and simulated results.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Chang Chen ◽  
Bo-Liang Liu ◽  
Ling Ji ◽  
Wei-Dong Chen

A dual-polarization substrate-integrated Fabry-Pérot cavity (SI-FPC) antenna is presented in this paper. The patch embedded in SI-FPC is excited with a near-field coupled feeding structure for V-polarization and with a slot-coupled feeding structure for H-polarization. The feeding structures are separated by a ground plane to improve the isolation between the ports. As a design example, an antenna operating at 10.0 GHz is fabricated and measured. A high degree of port isolation (<−40 dB) over the whole operating bandwidth (9.5–10.2 GHz) and good cross-polarization level (>25 dB) can be achieved.


2016 ◽  
Vol 9 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Jaishanker Prasad Keshari ◽  
Binod Kumar Kanaujia ◽  
Mukesh Kumar Khandelwal ◽  
Pritam Singh Bakariya ◽  
Ram Mohan Mehra

In this paper, triple-band stacked microstrip patch antennas (MPAs) are presented with wide impedance bandwidth and suppressed cross-polarization level. Triangular and circular shaped slots are embedded in the patch of antenna. Slot-loaded microstrip patches are fed with meandered microstrip line supported by a semi-ground plane structure. Triangular shaped slot-loaded MPA shows triple resonance at frequencies 2.2, 4.45, and 5.3 GHz having bandwidth of 45.9, 19.23, and 15.67%, respectively. Circular shaped slot-loaded MPA also shows triple resonance at frequencies 2.2, 4.42, and 5.38 GHz having bandwidth of 50.24, 33.21, and 13.43%, respectively. Using circular slot in place of triangular; bandwidth of the first and the second band is improved by 4.34 and 13.98%, respectively. Both the proposed antennas show an omnidirectional radiation pattern at all three resonance frequencies in the xz-plane with almost 0 dBi gain. Both the proposed antennas are fabricated on a FR-4 epoxy substrate and show a minimum level of cross-polarization radiations.


2007 ◽  
Vol 55 (11) ◽  
pp. 3091-3093 ◽  
Author(s):  
Zhanwei Zhou ◽  
Shiwen Yang ◽  
Zaiping Nie

Sign in / Sign up

Export Citation Format

Share Document