scholarly journals Transparent Metasurface for Generating Microwave Vortex Beams with Cross-Polarization Conversion

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2448 ◽  
Author(s):  
Hongyu Shi ◽  
Luyi Wang ◽  
Mengran Zhao ◽  
Juan Chen ◽  
Anxue Zhang ◽  
...  

In this paper, metasurfaces with both cross-polarization conversion and vortex beam-generating are proposed. The proposed finite metasurface designs are able to change the polarization of incident electromagnetic (EM) waves to its cross-polarization. In addition, they also can modulate the incidences into beams carrying orbital angular momentum (OAM) with different orders ( l = + 1 , l = + 2 , l = − 1 and l = − 2 ) by applying corresponding transmission phase distribution schemes on the metasurface aperture. The generated vortex beams are at 5.14 GHz. The transmission loss is lower than 0.5 dB while the co-polarization level is −10 dB compared to the cross-polarization level. The measurement results confirmed the simulation results and verified the properties of the proposed designs.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 727-732
Author(s):  
Marco Piccardo ◽  
Antonio Ambrosio

AbstractThe purity of an optical vortex beam depends on the spread of its energy among different azimuthal and radial modes, also known as $\ell $- and p-modes. The smaller the spread, the higher the vortex purity and more efficient its creation and detection. There are several methods to generate vortex beams with well-defined orbital angular momentum, but only few exist allowing selection of a pure radial mode. These typically consist of many optical elements with rather complex arrangements, including active cavity resonators. Here, we show that it is possible to generate pure vortex beams using a single metasurface plate—called p-plate as it controls radial modes—in combination with a polarizer. We generalize an existing theory of independent phase and amplitude control with birefringent nanopillars considering arbitrary input polarization states. The high purity, sizeable creation efficiency, and impassable compactness make the presented approach a powerful complex amplitude modulation tool for pure vortex generation, even in the case of large topological charges.



2021 ◽  
Vol 13 (8) ◽  
pp. 1430
Author(s):  
Diego Lorente ◽  
Markus Limbach ◽  
Bernd Gabler ◽  
Héctor Esteban ◽  
Vicente E. Boria

In this work, a novel rotation approach for the antenna elements of a linear phased array is presented. The proposed method improves by up to 14 dB the cross-polarization level within the main beam by performing a sequential 90° rotation of the identical array elements, and achieving measured cross-polarization suppressions of 40 dB. This configuration is validated by means of simulation and measurements of a manufactured linear array of five dual-polarized cavity-box aperture coupled stacked patch antennas operating in L-Band, and considering both uniform amplitude and phase distribution and beamforming with amplitude tapering. The analysis is further extended by applying and comparing the proposed design with the 180° rotation and non-rotation topologies. This technique is expected to be used for the next generation L-Band Airborne Synthetic Aperture Radar Sensor of the German Aerospace Center (DLR).



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2109
Author(s):  
Jialin Feng ◽  
Hongyu Shi ◽  
Jianjia Yi ◽  
Anxue Zhang ◽  
Zhuo Xu

Microwave devices with polarization conversion and band-pass filtering response have great application prospects on radomes. Here, the concepts of band-pass filters and cross-polarization converters are combined to realize a band-pass filtering cross-polarization converter with an extremely high polarization-conversion ratio. Most importantly, the device has an excellent out-of-band rejection level, above 30 and 40 dB for the lower and upper edges, respectively. In addition, the transmission zeros of the passband can be flexibly tuned independently. The band-pass filtering polarization converter was simulated, fabricated, and measured, and the measured results were found to be in good agreement with the simulation results.



Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Suhila Abulgasem ◽  
Faisel Tubbal ◽  
Raad Raad ◽  
Panagiotis Ioannis Theoharis ◽  
Sining Liu ◽  
...  

This article presents a compact wideband high gain patch antenna for CubeSat. The proposed metal-only antenna mainly consists of an upper patch, a folded ramp-shaped patch and shoring pins connecting the antenna with the ground plane. By adjusting the lengths and widths of two arms of the upper F-shaped patch, a second resonant frequency is generated, and hence, the −10 dB bandwidth is increased. Moreover, the effect of arms’ lengths and widths on reflection coefficients, operating frequency and bandwidth is presented. To validate the design and the simulation results, a prototype metal-only patch antenna was fabricated and tested in a Chamber. A good agreement between the simulated and measured results is achieved. The measured results show that the fabricated prototype achieves a −10 dB bandwidth of 44.9% (1.6–2.7 GHz), a small reflection coefficient of −24.4 dB and a high efficiency, i.e., 85% at 2.45 GHz. The radiation performance of the proposed antenna is measured, showing a peak realized gain of 8.5 dBi with cross polarization level less than −20 dB at 2.45 GHz and a 3 dB gain bandwidth of 61.22%.



Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thi Kim Thu Nguyen ◽  
Thi Minh Nguyen ◽  
Hong Quang Nguyen ◽  
Thanh Nghia Cao ◽  
Dac Tuyen Le ◽  
...  

AbstractA simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%. The efficiency is kept higher than 80% with wide incident angle up to 45°. Moreover, the proposed design achieves the linear-to-circular polarization conversion at two frequency bands of 7.42–7.6 GHz and 13–13.56 GHz. A prototype of the proposed polarization converter is fabricated and measured, showing a good agreement between the measured and simulated results. The proposed polarization converter exhibits excellent performances such as simple structure, multifunctional property, and large cost-efficient bandwidth and wide incident angle insensitivity in the linear cross polarization conversion, which can be useful for X-band applications. Furthermore, this structure can be extended to design broadband polarization converters in other frequency bands.





Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2590
Author(s):  
Alexandre Robichaud ◽  
Dominic Deslandes ◽  
Paul-Vahé Cicek ◽  
Frederic Nabki

This paper proposes a system in package (SiP) for ultrasonic ranging composed of a 4 × 8 matrix of piezoelectric micromachined ultrasonic transducers (PMUT) and an interface integrated circuit (IC). The PMUT matrix is fabricated using the PiezoMUMPS process and the IC is implemented in the AMS 0.35 µm technology. Simulation results for the PMUT are compared to the measurement results, and an equivalent circuit has been derived to allow a better approximation of the load of the PMUT on the IC. The control circuit is composed of a high-voltage pulser to drive the PMUT for transmission and of a transimpedance amplifier to amplify the received echo. The working frequency of the system is 1.5 MHz.



2021 ◽  
Vol 127 (11) ◽  
Author(s):  
Zhaomei Liu ◽  
Bei Zhao ◽  
Chunhong Jiao ◽  
Lihua Zhao ◽  
Xingxing Han


2018 ◽  
Vol 35 (10) ◽  
pp. 104204
Author(s):  
Yong Zhang ◽  
Xian-Ke Li ◽  
Cheng-Ping Huang


Sign in / Sign up

Export Citation Format

Share Document