scholarly journals Switching Performance of a 3.3-kV SiC Hybrid Power Module for Railcar Converters

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 182600-182609
Author(s):  
Xiang Li ◽  
Daohui Li ◽  
Guiqin Chang ◽  
Matthew Packwood ◽  
Daniel Pottage ◽  
...  
2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


2021 ◽  
Author(s):  
Hayden Carlton ◽  
John Harris ◽  
Alexis Krone ◽  
David Huitink ◽  
Md Maksudul Hossain ◽  
...  

Abstract The need for high power density electrical converters/inverters dominates the power electronics realm, and wide bandgap semiconducting materials, such as gallium nitride (GaN), provide the enhanced material properties necessary to drive at higher switching speeds than traditional silicon. However, lateral GaN devices introduce packaging difficulties, especially when attempting a double-sided cooled solution. Herein, we describe optimization efforts for a 650V/30A, GaN half-bridge power module with an integrated gate driver and double-sided cooling capability. Two direct bonded copper (DBC) substrates provided the primary means of heat removal from the module. In addition to the novel topology, the team performed electrical/thermal co-design to increase the multi-functionality of module. Since a central PCB comprised the main power loop, the size and geometry of the vias and copper traces was analyzed to determine optimal functionality in terms of parasitic inductance and thermal spreading. Thermally, thicker copper layers and additional vias introduced into the PCB also helped reduce hot spots within the module. Upon fabrication of the module, it underwent electrical characterization to determine switching performance, as well as thermal characterization to experimentally measure the total module’s thermal resistance. The team successfully operated the module at 400 V, 30 A with a power loop parasitic inductance of 0.89 nH; experimental thermal measurements also indicated the module thermal resistance to be 0.43 C/W. The overall utility of the design improved commensurately by introducing simple, yet effective electrical/thermal co-design strategies, which can be applied to future power modules.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3802 ◽  
Author(s):  
Maosheng Zhang ◽  
Na Ren ◽  
Qing Guo ◽  
Kuang Sheng

The SiC (silicon carbide) high-power module has great potential to replace the IGBT (insulated gate bipolar transistor) power module in high-frequency and high-power applications, due to the superior properties of fast switching and low power loss, however, when the SiC high-power module operates under inappropriate conditions, the advantages of the SiC high-power module will be probably eliminated. In this paper, four kinds of SiC high-power modules are fabricated to investigate fast switching performance. The variations in characteristics of drain-source voltage at turn-on transient under the combined conditions of multiple factors are studied. A characteristic of voltage plateau is observed from the drain-source voltage waveform at turn-on transient in the experiments, and the characteristic is reproduced by simulation. The mechanism behind the voltage plateau is studied, and it is revealed that the characteristic of drain-source voltage plateau is a reflection of the miller plateau effect of gate-source voltage on drain-source voltage under the combined conditions of fast turn-on speed and low DC bus voltage, while the different values of drain-source voltage plateau are attributed to the discrepancy of structure between upper-side and lower-side in the corresponding partial path of the drain circuit loop inside the module, with the standard 62 mm package outline.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000247-000251
Author(s):  
Liqi Zhang ◽  
Suxuan Guo ◽  
Pengkun Liu ◽  
Alex Q. Huang

Abstract SiC MOSFET-gate driver integrated power module is proposed to provide ultra-low stray inductance compared to traditional TO-247 or TO-220 packages. Kelvin connection eliminates the common source stray inductance and zero external gate resistor enables faster switching. This module can be operated at MHz switching frequency for high power applications with lower switching losses than discrete packages. Two different gate drivers and two different SiC MOSFETs are grouped and integrated into three integrated power modules. Comparative evaluation and analysis of gate driver impacts on switching speed of SiC MOSFET is shown in detail. The paper provides an insight of the gate driver impacts on the device switching performance in an integrated power module.


2017 ◽  
Vol 897 ◽  
pp. 689-692
Author(s):  
Stefan Matlok ◽  
Tobias Erlbacher ◽  
Florian Krach ◽  
Bernd Eckardt

Large power modules include several parallel mounted chips per switch to raise active area and current. By the electro-mechanical connection interface, the resulting large parasitic inductance is a huge problem especially for very fast switching SiC devices. This challenge is handled by many approaches, but these recent developments require additional development effort along all aspects of the power module, e.g. smart DBC layout, low inductive top side metallization, special terminal designs or additional pins. In this paper we demonstrate an approach to enable excellent switching performance with con-ventional power module technologies: By using a recently developed monolithic silicon RC (Si-RC) element to decouple the bus bar, this problem can be solved in a very efficient way. The Si-RC element is assembled directly adjacent to the power switches on the DBC. This allows a significant reduction of the SiC chip area by minimizing the power losses caused by the switching transients from the parasitic DC-link and module inductances.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4602
Author(s):  
Junghun Kim ◽  
Kwangsoo Kim

In this study, a novel 4H-SiC double-trench metal-oxide semiconductor field-effect transistor (MOSFET) with a side wall heterojunction diode is proposed and investigated by conducting numerical technology computer-aided design simulations. The junction between P+ polysilicon and the N-drift layer forming a heterojunction diode on the side wall of the source trench region suppresses the operation of the PiN body diode during the reverse conduction state. Therefore, the injected minority carriers are completely suppressed, reducing the reverse recovery current by 73%, compared to the PiN body diodes. The switching characteristics of the proposed MOSFET using the heterojunction diode as a freewheeling diode was compared to the power module with a conventional MOSFET and an external diode as a freewheeling diode. It is shown that the switching performance of the proposed structure exhibits equivalent characteristics compared to the power module, enabling the elimination of an external freewheeling diode in the power system.


Sign in / Sign up

Export Citation Format

Share Document