Analysis of the Self-Protection HTS Cable in Low Voltage DC Microgrid

Author(s):  
Ying Jie Yang
2012 ◽  
Vol 614-615 ◽  
pp. 1661-1665
Author(s):  
Ling Hui Deng ◽  
Zhi Xin Wang ◽  
Jian Min Duan

The low voltage DC (LVDC) distribution system is a new concept and a promising technology to be used in the future smart distribution system having high level cost-efficiency and reliability. In this paper, a low-voltage (LV) DC microgrid protection system design is proposed. Usually, an LVDC microgrid must be connected to an ac grid through converters with bidirectional power flow and, therefore, a different protection scheme is needed. This paper describes practical protection solutions for the LVDC network and an LVDC system laboratory prototype is being experimentally tested by MATLAB/SIMULINK. The results show that it is possible to use available devices to protect such a system. But other problems may arise which needs further study.


2007 ◽  
Vol 3 (4) ◽  
pp. 20 ◽  
Author(s):  
Dan Wang ◽  
Qian Zhang ◽  
Jiangchuan Liu

Author(s):  
Shima Sadaf ◽  
Nasser Al-Emadi ◽  
Atif Iqbal ◽  
Mohammad Meraj ◽  
Mahajan Sagar Bhaskar

DC-DC power converters are necessary to step-up the voltage or current with high conversion ratio for many applications e.g. photovoltaic and fuel cell energy conversion, uninterruptible power supply, DC microgrid, automobile, high intensity discharged lamp ballast, hybrid vehicle, etc. in order to use low voltage sources. In this project, a modified SIBC (mSIBC) is proposed with reduced voltage stress across active switches. The proposed mSIBC configuration is transformerless and simply derived by replacing one diode of the classical switched inductor structure with an active switch. As a result, mSIBC required low voltage rating active switches, as the total output voltage is shared between two active switches. Moreover, the proposed mSIBC is low in cost, provides higher efficiency and required the same number of components compared to the classical SIBC. The experimental results are presented which validated the theoretical analysis and functionality, and the efficiency of the designed converter is 97.17%. The proposed mSIBC converter provides higher voltage conversion ratio compared to classical converters e.g. boost, buck-boost, cuk, and SEPIC. The newly designed configurations will aid the intermediate power stage between the renewable sources and utility grid or high voltage DC or AC load. Since, the total output voltage is distributed among the two active switches, low voltage rating switches can be employed to design the power circuit of the proposed converter. The classical boost converter or recently proposed switched inductor based boost converter can be replaced by the proposed mSIBC converter in real-time applications such as DC microgrid, DC-DC charger, battery backup system, UPS, EV, an electric utility grid. The proposed power circuitry is cost effective, compact in size, easily diagnostic, highly efficient and reliable.


Author(s):  
Afnan Maatouk Al - Talhi

The current study aimed to develop a mobile application based on video modeling to improve and enhance self-protection skills for children with autism. Semi-experimental design of the two groups was adopted: the control, which received the self-protection skills in the traditional way, while these skills was provided to the experimental group through the application based on video modeling. The research sample was consisted of 16 students who met the criteria. The researcher was applied the self-protection skills scale on the sample. After the experiment was applied for five weeks, the data were analyzed statistically. The results showed the effectiveness of the application in the development of self-protection skills for autistic children. The researcher recommended the use of the preferences of children with autism and the use of applications that based on video modeling in their education.


Sign in / Sign up

Export Citation Format

Share Document