Dual Gate oxide reliability improved by Spacer and Salicide process optimisation

Author(s):  
G. Richou ◽  
D. Ottenwaelder ◽  
J.L. Baltzinger ◽  
B. Delahaye ◽  
F. Domart ◽  
...  
2000 ◽  
Author(s):  
Yunqiang Zhang ◽  
Chock H. Gan ◽  
Xi Li ◽  
James Lee ◽  
David Vigar ◽  
...  

1995 ◽  
Vol 35 (3) ◽  
pp. 603-608 ◽  
Author(s):  
S.R. Anderson ◽  
R.D. Schrimpf ◽  
K.F. Galloway ◽  
J.L. Titus

1998 ◽  
Vol 38 (2) ◽  
pp. 255-258 ◽  
Author(s):  
G Ghidini ◽  
C Clementi ◽  
D Drera ◽  
F Maugain

2021 ◽  
Author(s):  
Tianshi Liu ◽  
Shengnan Zhu ◽  
Michael Jin ◽  
Limeng Shi ◽  
Marvin H. White ◽  
...  

2006 ◽  
Vol 527-529 ◽  
pp. 1051-1054 ◽  
Author(s):  
Caroline Blanc ◽  
Dominique Tournier ◽  
Phillippe Godignon ◽  
D.J. Brink ◽  
Véronique Soulière ◽  
...  

We report on 4H-SiC MOSFET devices implemented on p-type <11-20>-oriented epitaxial layers, using a two-step procedure for gate oxide formation. First is a thin, dry, thermal SiO2 layer grown at 1050°C for 1 hour. Next, is a thick (50 nm) layer of complementary oxide deposited by PECVD using TEOS as gas precursor. With respect to the standard thermal oxidation process, this results in much improvement of the field effect mobility. For the best samples, we find a peak value in the range of 330 cm2/Vs while, on the full wafer, an average mobility of about 160 cm2/Vs is found. Up to now, this is one of the best results ever reported for 4H-SiC MOSFETs.


Sign in / Sign up

Export Citation Format

Share Document