Bottom relief and water discharge changes in Nemunas delta due to climate change during the last century

Author(s):  
Erika Glazaciovaite ◽  
I. Dailidiene ◽  
I. Osadcij
2021 ◽  
Author(s):  
Simon Ricard ◽  
Philippe Lucas-Picher ◽  
François Anctil

Abstract. Statistical post-processing of climate model outputs is a common hydroclimatic modelling practice aiming to produce climate scenarios that better fit in-situ observations and to produce reliable stream flows forcing calibrated hydrologic models. Such practice is however criticized for disrupting the physical consistency between simulated climate variables and affecting the trends in climate change signals imbedded within raw climate simulations. It also requires abundant good-quality meteorological observations, which are not available for many regions in the world. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations, nor for statistical post-processing of climate model outputs, nor for calibrating hydrologic models. By combining asynchronous hydroclimatic modelling, an alternative framework designed to construct hydrologic scenarios without resorting to meteorological observations, and quantile perturbation applied to streamflow observations, the proposed workflow produces sound and plausible hydrologic scenarios considering: (1) they preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascades despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four subcatchments of the Chaudière River, Canada, using 9 North American CORDEX simulations and a pool of lumped conceptual hydrologic models. Forced with raw climate model outputs, hydrologic models are calibrated over the reference period according to a calibration metric designed to function with temporally uncorrelated observed and simulated streamflow values. Perturbation factors are defined by relating each simulated streamflow quantiles over both reference and future periods. Hydrologic scenarios are finally produced by applying perturbation factors to available streamflow observations.


2005 ◽  
Vol 36 (4-5) ◽  
pp. 321-333 ◽  
Author(s):  
Valentina Krysanova ◽  
Fred Hattermann ◽  
Anja Habeck

Reliable modelling of climate–water interactions at the river basin and regional scale requires development of advanced modelling approaches at scales relevant for assessing the potential effects of climate change on the hydrological cycle. These approaches should represent the atmospheric, surface and subsurface hydrological processes and take into account their characteristic temporal and spatial scales of occurrence. The paper presents a climate change impact assessment performed for the Elbe River basin in Germany (about 100 000 km2). The method used for the study combines: (a) a statistical downscaling method driven by GCM-predicted temperature trend for producing climate scenarios, and (b) a simulation technique based on an ecohydrological semi-distributed river basin model, which was thoroughly validated in advance. The overall result of the climate impact study for the basin is that the mean water discharge and the mean groundwater recharge in the Elbe basin will be most likely decreased under the expected climate change and diffuse source pollution will be diminished. Our study confirms that the uncertainty in hydrological and water quality responses to changing climate is generally higher than the uncertainty in climate input. The method is transferable to other basins in the temperate zone.


2013 ◽  
Vol 17 (2) ◽  
pp. 507-517 ◽  
Author(s):  
L. Surinaidu ◽  
C. G. D. Bacon ◽  
P. Pavelic

Abstract. The basaltic aquifers of the Upper Bhima River basin in southern India are heavily utilized for small-scale agriculture but face increasing demand-related pressures along with uncertainty associated with climate change impacts. To evaluate likely groundwater resource impacts over the coming decades, a regional groundwater flow model for the basin was developed. Model predictions associated with different climate change and abstraction scenarios indicate that the continuation of current rates of abstraction would lead to significant groundwater overdraft, with groundwater elevations predicted to fall by −6 m over the next three decades. Groundwater elevations can however be stabilized, but would require 20–30% of the mean surface water discharge from the basin to be recharged to groundwater, along with reductions in pumping (5–10%) brought about by improved water efficiency practices and/or shifts towards lower-water use crops. Modest reductions in pumping alone cannot stabilize groundwater levels; targeted conjunctive use and improved water use efficiency are also needed.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3547
Author(s):  
Rossana Escanilla-Minchel ◽  
Hernán Alcayaga ◽  
Marco Soto-Alvarez ◽  
Christophe Kinnard ◽  
Roberto Urrutia

Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier melting in dry periods. Recent climate change has led to an elevation of the zero-degree isotherm, a decrease in solid-state precipitation amounts and an accelerated loss of glacier and snow storage in the Chilean Andes. This situation calls for a better understanding of future water discharge in Andean headwater catchments in order to improve water resources management in glacier-fed populated areas. The present study uses hydrological modeling to characterize the hydrological processes occurring in a glacio-nival watershed of the central Andes and to examine the impact of different climate change scenarios on discharge. The study site is the upper sub-watershed of the Tinguiririca River (area: 141 km2), of which nearly 20% is covered by Universidad Glacier. The semi-distributed Snowmelt Runoff Model + Glacier (SRM+G) was forced with local meteorological data to simulate catchment runoff. The model was calibrated on even years and validated on odd years during the 2008–2014 period and found to correctly reproduce daily runoff. The model was then forced with downscaled ensemble projected precipitation and temperature series under the RCP 4.5 and RCP 8.5 scenarios, and the glacier adjusted using a volume-area scaling relationship. The results obtained for 2050 indicate a decrease in mean annual discharge (MAD) of 18.1% for the lowest emission scenario and 43.3% for the most pessimistic emission scenario, while for 2100 the MAD decreases by 31.4 and 54.2%, respectively, for each emission scenario. Results show that decreasing precipitation lead to reduced rainfall and snowmelt contributions to discharge. Glacier melt thus partly buffers the drying climate trend, but our results show that the peak water occurs near 2040, after which glacier depletion leads to reducing discharge, threatening the long-term water resource availability in this region.


2019 ◽  
Vol 276 ◽  
pp. 04003
Author(s):  
I Wayan Sutapa ◽  
Muhammad Galib Ishak ◽  
Vera Wim Andiese

Global Climate change has been discussed in the High-Level Conference in Rio de Janeiro, Brazil in 1992 and has given more impacts in the world. One of the global climate exchanges is the rising of intensity and frequency of climate extreme which included drought, flood, and hurricane. The objective of this study was to investigate the effects of climate change on evapotranspiration and rainfall for river water discharge of Rawa. The investigation has been carried out using daily data and analyzed on a daily, monthly and yearly. The rain stations that represent the location of this research are Palolo, Kulawi, and Wuasa. Climatological station nearest to the research station used Bora. Climate trends and projected changes in the method of Makesens analysis (Mann-Kendall, Sens) and the correlation of rainfall and evapotranspiration discharge used linear regression equation. Similarly, the correlation between changes in soil water storage with rainfall, evapotranspiration, and discharge was analyzed in a linear manner. The conclusion of this study is the climate changes in the River of Rawa watershed was characterized by slowly increasing temperature, increasing rainfall, and decreasing discharge.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Haifang Yao ◽  
Changxing Shi ◽  
Wenwei Shao ◽  
Jianbin Bai ◽  
Hui Yang

Using data of temperature, wind, precipitation, water discharge, and sediment load, the changes in runoff and sediment load of the Xiliugou basin in the upper Yellow River were investigated and the contributions of climate change and human activities to these changes were quantitatively estimated. Results show that the runoff and sediment load of the stream declined gradually in 1960–2012. According to the abrupt change point detected, the runoff and sediment series were divided into two periods: 1960–1998 and 1999–2012. The reductions of runoff and sediment load in 1999–2012 were found to be related to climate change and human activities, and the latter played a dominant role with a contribution of about 68% and 75%, respectively. The effects of rainfall intensity should be considered to avoid overestimating or underestimating the contributions of rainfall changes to the variations of runoff and sediment load in the semiarid region. An inspection of changes in water discharge and sediment regime indicated that the frequency of discharge between 0 and 5 m3/s increased while that between 5 and 1000 m3/s decreased in 2006–2012. This phenomenon can be attributed principally to the soil and water conservation practices.


2020 ◽  
pp. 22-31 ◽  
Author(s):  
Nguyen Kim Loi ◽  
Vo Ngoc Quynh Tram ◽  
Nguyen Thi Tinh Au

Climate is the main factor affecting hydrology in a watershed. For purely agricultural watershed, hydrological assessment and management play a very important role in the region's agricultural development. In this study, the hydrological was simulated by the Soil and Water Assessment Tool (SWAT) model. This paper aimed to calibrate and validate the SWAT model in Dak B’la watershed in Central Highland Vietnam and assess the climate change on water discharge. The coefficient of determination (R²) and Nash-Sutcliffe index (NSI), and Percent BIAS (PBIAS) during the calibration process was 0.75, 0.72, and -1.15 respectively and validation process was 0.82, 0.83, 3.67 respectively. It proved the high reliability of the SWAT model after calibration. The two climate scenarios were selected in this investigation: scenario A is the existing climate using the data from 2001 to 2018 and scenario B is the A1B emission scenario for the future period from 2020 to 2069. Compared to the average water discharge from 2001-2018 and average water discharge from 2020 to 2069, the results indicated that climate change increases the average water discharge (0.55%), especially in 2050, the water discharge in the flood season (in November) is 584 m3/s, which higher than the largest flood in 2009 of 450 m3/s.


2021 ◽  
Author(s):  
Sokchhay Heng ◽  
Alexander Horton ◽  
Panha Hok ◽  
Sarit Chung ◽  
Jorma Koponen ◽  
...  

Abstract. Water infrastructure development is crucial for driving economic growth in the developing countries of the Mekong. Yet it may also alter existing hydrological and flood conditions, with serious implications for water management, agricultural production and ecosystem services, especially in the floodplain regions. Our current understanding of the hydrological and flood pattern changes associated with infrastructural development still contain several knowledge gaps, such as the consideration of overlooked prospective drivers, and the interactions between multiple drivers. This research attempts to conduct a cumulative impact assessment of flood changes in the Cambodian part of the Mekong floodplains. The developmental activity of six central sectors (hydropower, irrigation, navigation, flood protection, agricultural land use and water use) as well as climate change were considered in our modelling analysis. Our results show that the monthly, sub-seasonal, and seasonal hydrological regimes will be subject to substantial alterations under the 2020 planned development scenario, and even larger alterations under the 2040 planned development scenario. The degree of hydrological alteration under the 2040 planned development is somewhat counteracted by the effect of climate change, as well as the removal of mainstream dams in the Lower Mekong Basin and hydropower mitigation investments. The likely impact of decreasing water discharge in the early wet season (up to −34 %) will pose a critical challenge to rice production, whereas the likely increase in water discharge in the mid-dry season (up to +54 %) indicates improved water availability for coping with drought stresses and sustaining environmental flow. At the same time, these changes would have drastic impacts on total flood extent, which is projected to decline up to −18 %, having potentially negative impacts on floodplain productivity whilst at the same time reducing the flood risk to the area. Our findings urge the timely establishment of adaptation and mitigation strategies to manage such future environmental alterations in a sustainable manner.


2019 ◽  
Vol 8 (1) ◽  
pp. 94
Author(s):  
Stulina Galina ◽  
Solodkiy Georgy ◽  
Eshtchanov Odilbek

Khorezm province is located in the northwest part of Uzbekistan in the basin of one of largest water sources – the Amu Darya River - and occupies the left bank in the Amu Darya lower reaches. The area of the province is 6,100 km2. The province borders Karakalpakstan in the North, Turkmenistan in the South, and Bukhara province of Uzbekistan in the South-East. Uzbekistan is situated in the territory, where high rates of climate change are expected and observed. According to forecasts, further climate change would cause even higher air temperatures, altered precipitation patterns and severe and prolonged droughts, with consequent lowering of available water resources. More plausible scenarios for Uzbekistan suggest more than 4°С rise in average annual air temperatures by 2080. Water discharge along the Amu Darya River is expected to decrease potentially by 10-15%. Objective of given work is to analyze and assess the positive impacts of climate change through alterations of bioclimatic potential in given terrain and agromelioration parameters of crops, with consequent changes in crop water requirements. Earlier research results showed that the observed growth of thermal potential allows earlier sowing and more rapid accumulation of effective temperatures. This will shorten plant development phases, on the one hand, and, as a result, reduce water use by crops, on the other hand.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1803
Author(s):  
Inmaculada C. Jiménez-Navarro ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Julio Pérez-Sánchez ◽  
Javier Senent-Aparicio

Precipitation and temperature around the world are expected to be altered by climate change. This will cause regional alterations to the hydrological cycle. For proper water management, anticipating these changes is necessary. In this study, the basin of Lake Erken (Sweden) was simulated with the recently released software SWAT+ to study such alterations in a short (2026–2050), medium (2051–2075) and long (2076–2100) period, under two different climate change scenarios (SSP2-45 and SSP5-85). Seven global climate models from the latest projections of future climates that are available (CIMP 6) were compared and ensembled. A bias-correction of the models’ data was performed with five different methods to select the most appropriate one. Results showed that the temperature is expected to increase in the future from 2 to 4 °C, and precipitation from 6% to 20%, depending on the scenario. As a result, water discharge would also increase by about 18% in the best-case scenario and by 50% in the worst-case scenario, and the surface runoff would increase between 5% and 30%. The floods and torrential precipitations would also increase in the basin. This trend could lead to soil impoverishment and reduced water availability in the basin, which could damage the watershed’s forests. In addition, rising temperatures would result in a 65% reduction in the snow water equivalent at best and 92% at worst.


Sign in / Sign up

Export Citation Format

Share Document