Review and Investigation of Merkle Tree’s Technical Principles and Related Application Fields

Author(s):  
Shimin Jing ◽  
Xin Zheng ◽  
Zhengwen Chen
Author(s):  
Paul Lindhout ◽  
Truus Teunissen ◽  
Genserik Reniers

The positive reception of Wang and Burris’ photovoice method, published in 1997, has led to a proliferation of ways in which professionals deploy photovoice in a widening range of application fields, e.g., public health, social development and phenomenological research of human experiences. A scoping review method is used to obtain an overview of current photovoice designs and of application examples in the health and safety domain. The results show a variety of method designs. Our findings indicate that all of the photovoice designs are composed from different combinations of eleven process steps. Five generic objectives cover the range of application examples found in our literature study. We therefore condensed the variety into five generic photovoice designs for: (a) communication, (b) education, (c) exploration, (d) awareness, and (e) empowerment purposes. We propose this for use in a classification system. The potential for application of these photovoice designs in safety management is illustrated by the existence of various safety related application examples. We argue that the five generic designs will facilitate the implementation and usage of photovoice as a tool. We recommend that both a theoretical framework and guidance are further developed. We conclude that photovoice holds potential for application in health and safety management.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 334
Author(s):  
Chao Qiu ◽  
Leiding Ding ◽  
Lan Zhang ◽  
Jintao Xu ◽  
Ziqiang Ma

Precipitation data with fine quality plays vital roles in hydrological-related applications. In this study, we choose the high-quality China Merged Precipitation Analysis data (CMPA) as the benchmark for evaluating four satellite-based precipitation products (PERSIANN-CCS, FY4A QPE, GSMap_Gauge, IMERG-Final) and one model-based precipitation product (ERA5-Land), respectively, at 0.1°, hourly scales over the Zhejiang province, China, in summer, from June to August 2019. The main conclusions were as follows—(1) all other products demonstrate similar patterns with CMPA (~325.60 mm/h, std ~0.07 mm/h), except FY4A QPE (~281.79 mm/h, std ~0.18 mm/h), while, overall, the PERSIANN-CCS underestimates the precipitation against CMPA with a mean value around 236.29 mm/h (std ~0.06 mm/h), and the ERA5-Land, GSMap_Guage, and IMERG-Final generally overestimate the precipitation with a mean value around 370.00 mm/h (std ~0.06 mm/h). (2) The GSMap_Gauge outperforms IMERG-Final against CMPA with CC ~0.50 and RMSE ~1.51 mm/h, and CC ~0.48 and RMSE ~1.64 mm/h, respectively. (3) The PERSIANN-CCS significantly underestimates the precipitation (CC ~0.26, bias ~−35.03%, RMSE ~1.81 mm/h, probability of detection, POD, ~0.33, false alarm ratio, FAR, ~0.47), potentially due to its weak abilities to capture precipitation events and estimate the precipitation. (4) Though ERA5-Land has the best ability to capture precipitation events (POD ~0.78), the largest misjudgments (FAR ~0.54) result in its great uncertainties with CC ~ 0.39, which performs worse than those of GSMap_Gauge and IMERG-Final. (5) The ranking of precipitation products, in terms of the general evaluation metrics, over Zhejiang province is GSMap_Gauge, IMERG-Final, ERA5-Land, PERSIANN-CCS, and FY4A QPE, which provides valuable recommendations for applying these products in various related application fields.


Author(s):  
Jovan Vukovié

Conventional electron microscope TEM -100 (Made by “ELECTRON”, Sumy, USSR; Fig. 1) was presented at the XI Int. Congress on Electron Microscopy (Kyoto) by I.S. Lyalko et al. (1,2). The purpose of the microscope constructors were to design a small-sized general conventional TEM for various application fields. The microscope have mini lenses, which winding is placed in closed casing and soaked in working liquid (low boiling temperature) but upper part of the casing being water cooled.In this communication we gave our first experience and impression as a customer, beginning from the montage, the instruction and the testing of the microscope to our application in the field of biological specimens. Just after montage of the microscope on the second floor, the test of the point resolution power was performed by Ir specimen. It was achieved 0.5 nm (Fig. 2 and 3) on the roll film (ORWO 22 DIN) with 300 OOOx magnification and anticontamination device. The ultimate vacuum (about 10exp-6 mm Hg, ion discharge pump) also achieved using large trap cooled by liquid nitrogen.


Author(s):  
M. B. Sergeev ◽  
V. A. Nenashev ◽  
A. M. Sergeev

Introduction: The problem of noise-free encoding for an open radio channel is of great importance for data transfer. The results presented in this paper are aimed at stimulating scientific interest in new codes and bases derived from quasi-orthogonal matrices, as a basis for the revision of signal processing algorithms.Purpose: Search for new code sequences as combinations of codes formed from the rows of Mersenne and Raghavarao quasi-orthogonal matrices, as well as complex and more efficient Barker — Mersenne — Raghavarao codes.Results: We studied nested code sequences derived from the rows of quasi-orthogonal cyclic matrices of Mersenne, Raghavarao and Hadamard, providing estimates for the characteristics of the autocorrelation function of nested Barker, Mersenne and Raghavarao codes, and their combinations: in particular, the ratio between the main peak and the maximum positive and negative “side lobes”. We have synthesized new codes, including nested ones, formed on the basis of quasi-orthogonal matrices with better characteristics than the known Barker codes and their nested constructions. The results are significant, as this research influences the establishment and development of methods for isolation, detection and processing of useful information. The results of the work have a long aftermath because new original code synthesis methods need to be studied, modified, generalized and expanded for new application fields.Practical relevance: The practical application of the obtained results guarantees an increase in accuracy of location systems, and detection of a useful signal in noisy background. In particular, these results can be used in radar systems with high distance resolution, when detecting physical objects, including hidden ones.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Camilo Broc ◽  
Therese Truong ◽  
Benoit Liquet

Abstract Background The increasing number of genome-wide association studies (GWAS) has revealed several loci that are associated to multiple distinct phenotypes, suggesting the existence of pleiotropic effects. Highlighting these cross-phenotype genetic associations could help to identify and understand common biological mechanisms underlying some diseases. Common approaches test the association between genetic variants and multiple traits at the SNP level. In this paper, we propose a novel gene- and a pathway-level approach in the case where several independent GWAS on independent traits are available. The method is based on a generalization of the sparse group Partial Least Squares (sgPLS) to take into account groups of variables, and a Lasso penalization that links all independent data sets. This method, called joint-sgPLS, is able to convincingly detect signal at the variable level and at the group level. Results Our method has the advantage to propose a global readable model while coping with the architecture of data. It can outperform traditional methods and provides a wider insight in terms of a priori information. We compared the performance of the proposed method to other benchmark methods on simulated data and gave an example of application on real data with the aim to highlight common susceptibility variants to breast and thyroid cancers. Conclusion The joint-sgPLS shows interesting properties for detecting a signal. As an extension of the PLS, the method is suited for data with a large number of variables. The choice of Lasso penalization copes with architectures of groups of variables and observations sets. Furthermore, although the method has been applied to a genetic study, its formulation is adapted to any data with high number of variables and an exposed a priori architecture in other application fields.


Sign in / Sign up

Export Citation Format

Share Document