Fine pitch TAB assembly technology for 820 pin ceramic PGA single point bonding technology at room temperature

Author(s):  
T. Ando ◽  
T. Tomioka ◽  
M. Nakazono ◽  
K. Atsumi ◽  
Y. Tane ◽  
...  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Tim Padfield ◽  
Nicolas Padfield ◽  
Daniel Sang-Hoon Lee ◽  
Anne Thøgersen ◽  
Astrid Valbjørn Nielsen ◽  
...  

Abstract In this paper different scenarios for back protection of a canvas painting and their effect on the stability of the relative humidity behind the painting are tested. A painting on canvas, stretched on a wooden frame, was fitted with various styles of back protection and then exposed to a cycle of temperature variation at the back, with the front exposed to a constant room temperature. The painting was also exposed to a constant wall temperature and varying room temperature. The space between the canvas and the back board was fitted with temperature and relative humidity (RH) sensors. The sensors were used to provide the essential single-point data of temperature and RH at the given locations. For more comprehensive understanding of the rather confined space, further numerical simulation (computational fluid dynamics) was adopted as part of the investigation. The computational fluid dynamics was used to understand the natural convection within the microclimate through the depictions of temperature distribution, as well as the corresponding airflow. The unprotected painting suffered a large RH variation at its back, because of the varying canvas temperature interacting with the constant room air moisture content. Effective stabilisation of the RH behind the canvas against temperature variation was provided by a shiny aluminium alloy sheet sealed against the frame. The non-absorbent back board experienced a strong variation in RH, because of humidity buffering of the space by the painting canvas at a different temperature. Either a space or insulation between this back plate and the wall reduced the risk of condensation on the inner surface of the back plate. Insulation will however increase the risk of condensation on the wall surface behind the painting. An absorbent back board de-stabilised the RH at the painting canvas surface by providing a competing humidity buffer at a different temperature. To provide protection against moisture exchange with an unsuitable room RH, extra humidity buffer was placed 3 mm behind the painting canvas, kept close to the painting temperature by insulation between this buffer and the back board. This stabilised RH at the canvas surface but increased both the temperature and the RH variation at the back board and thus increased the risk of condensation on the inner surface of the back board. The RH and the temperature in the narrow spaces between the painting canvas and the wooden stretcher frame were always more nearly constant than in the open canvas area, which suggests an explanation for the widely observed better condition of the areas of canvas paintings which lie close over the support structure. Our conclusion is that a non-absorbent, impermeable back plate gives good RH stability against a changing temperature gradient between wall and canvas painting surface.


2011 ◽  
Vol 128-129 ◽  
pp. 607-610
Author(s):  
Min Wang ◽  
Jie Chen ◽  
Niu Liu ◽  
Ya Wang

Mid-infrared lasers are very suitable for high-sensitive trace-gases detection for their wavelengths cover the fundamental absorption lines of most gases. Quantum-cascade (QC) lasers have been demonstrated to be ideal light sources with its special power, tuning and capability of operating in room-temperature. All these merits make it appropriate for the high resolution spectrum analysis. The absorption spectrum monitoring technology based on the QC laser pulsed operating in the room temperature, combining with the strong absorption of the gas molecule in the basic frequency, has become an effective way to monitor the trace gas with the characteristic of high sensitivity, good selectivity and fast response. In this paper, the inter-pulse spectroscopy based on a room-temperature distributed-feedback pulsed QC laser was introduced. Our approach to trace gas monitoring with QC lasers relies on short current pulses which are designed to produce even shorter light pulses. Each pulse corresponds to a single point in a spectrum. The N2O absorption spectrum centered at 2178.2cm-1was also obtained.


2015 ◽  
Vol 35 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Chunpeng Chu ◽  
Bingyan Jiang ◽  
Laiyu Zhu ◽  
Fengze Jiang

Abstract A novel combination of thermal bonding and in-mold assembly technology was created to produce microfluidic chips out of polymethylmethacrylate (PMMA), which is named “in-mold bonding technology”. In-mold bonding experiments of microfluidic chips were carried out to investigate the influences of bonding process parameters on the deformation and bonding strength of microchannels. The results show that bonding temperature has the greatest impact on the deformation of microchannels, while bonding pressure and bonding time have more influence on deformation in height than in top width. Considering the bonding strength, the bonding temperature and the bonding pressure have more impact than the bonding time. The time is crucial for the sealing of the chips. By setting the bonding parameters reasonably, the microchannel deformation is <10%, while the bonding strength of the chips is 350 kPa. The production cycle of the chip is reduced to <5 min.


Author(s):  
K. Hatada ◽  
H. Fujimoto ◽  
T. Kawakita ◽  
T. Ochi

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 671 ◽  
Author(s):  
Marina Rumyantseva ◽  
Abulkosim Nasriddinov ◽  
Svetlana Vladimirova ◽  
Sergey Tokarev ◽  
Olga Fedorova ◽  
...  

In this work, the hybrids based on nanocrystalline SnO2 or In2O3 semiconductor matrixes and heterocyclic Ru(II) complex are studied as materials for gas sensors operating at room temperature under photoactivation with visible light. Nanocrystalline semiconductor oxides are obtained by chemical precipitation with subsequent thermal annealing and characterized by XRD, SEM and single-point BET methods. The heterocyclic Ru(II) complex is synthesized for the first time and investigated by 1H NMR, 13C NMR APT, MALDI-MS analysis, and UV-Vis spectroscopy. The HOMO and LUMO energies of the Ru(II) complex are calculated from cyclic voltammetry data. The hybrid materials are characterized by TGA-MS analysis and EDX mapping. The optical properties of hybrids are studied by UV-Vis spectroscopy in the diffuse reflection mode. The investigation of spectral dependencies of photoconductivity of hybrid samples demonstrates that the role of organic dye consists in shifting the photosensitivity range towards longer wavelengths. Sensor measurements demonstrate that hybrid materials are able to detect NO2 in the concentration range of 0.25–2 ppm without the use of thermal heating under periodic illumination with even low-energy long-wavelength (red) light.


2017 ◽  
Vol 6 (4) ◽  
pp. 149-155
Author(s):  
Kazuyuki MITSUKURA ◽  
Tomonori MINEGISHI ◽  
Keiichi HATAKEYAMA ◽  
Kenneth June REBIBIS ◽  
Teng WANG ◽  
...  

Author(s):  
Shubhamkar Kulkarni ◽  
Vijay Sarthy Mysore Sreedhara ◽  
Gregory Mocko

The objective of this research is to study the improvement in the formability of thermoplastics using heat assisted single point incremental forming. Single point incremental forming is a production process for forming sheet materials without the use of dedicated tooling (dies/molds). The process is an alternative to thermoforming for low volume forming of sheets. It involves forming the final shape through a series of localized incremental deformations. It has been observed that heat assisted techniques have shown an improvement in the formability limits for sheet metals. In this research, this concept has been tested for improving the formability of polymer sheets. Hot air us used to increase the temperature within a localized region in front of the tool. A single point incremental forming device is modified through the development of a specialized tool holder and nozzle which heats the polymer sheet to temperatures higher than the room temperature but below the glass transition temperature of the polymer and applies the forming loads. The results from the experiments are summarized as: i) the formability angle increases of polystyrene from 27 degrees to 46 degrees when comparing room temperature forming to forming at an elevated temperature (170°F–180 °F), ii) a reduction in the forces needed for forming is observed qualitatively, and iii) the surface finish on the formed parts do not show visible change. This demonstrates promise of manufacturing complex shapes from thermoplastic polymer sheets using heat assisted incremental forming. Future research includes 1) simulating the localized deformation of the material to enable process planning, 2) quantifying the forming forces and heat control of the system, and 3) exploring the manufacturing technique to other materials.


Sign in / Sign up

Export Citation Format

Share Document