Assessment of residual damage in leadfree electronics subjected to multiple thermal environments of thermal aging and thermal cycling

Author(s):  
Pradeep Lall ◽  
Rahul Vaidya ◽  
Vikrant More ◽  
Kai Goebel ◽  
Jeff Suhling
2009 ◽  
Vol 417-418 ◽  
pp. 173-176
Author(s):  
Hiroyuki Waki ◽  
Akira Kobayashi

Thermal barrier coatings (TBCs) have been employed for the insulation of substrates from high temperature in gas turbine plants. The TBC system consists of ceramic top coating, metallic bond coating and substrate. Delamination of the ceramic coating is important problem in TBC systems. In this paper, the delamination mechanism was studied by residual stress history under thermal aging and thermal cycle conditions. In-plane residual stress histories of ceramic coating and bond coating after thermal aging and cycling were measured by X-ray diffraction method. The residual stress under thermal cycling was also calculated by FEM analysis. The results obtained were as follows: (1) in-plane surface residual stresses of the coatings scarcely changed regardless of the increase of thermally grown oxidation (TGO). (2) high compressive thermal stress, residual stress at room temperature, in ceramic coating induced by thermal stress did not occur. It was found that stress of ceramic top coating was relaxed by micro cracks and driving stress of delamination was in-plane high compressive stress.


2012 ◽  
Vol 8 (7) ◽  
pp. 385-390 ◽  
Author(s):  
Mohammad M. Hamasha ◽  
Tara Dhakal ◽  
Khalid Alzoubi ◽  
Shehab Albahri ◽  
Awni Qasaimeh ◽  
...  

Author(s):  
Pradeep Lall ◽  
Mahendra Harsha ◽  
Jeff Suhling ◽  
Kai Goebel

Electronics in high reliability applications may be stored for extended periods of time prior to deployment. Prior studies have shown the elastic modulus and ultimate tensile strength of the SAC leadfree alloys reduces under prolonged exposure to high temperatures [Zhang 2009]. The thermal cycle magnitudes may vary over the lifetime of the product. Long-life systems may be re-deployed several times over the use life of the product. Previously, the authors have identified damage pre-cursors for correlation of the damage progression with the microstructural evolution of damage in second level interconnects [Lall 2004a-d, 2005a-b, 2006a-f, 2007a-e, 2008a-f, 2009a-d, 2010a-j]. Leadfree assemblies with Sn3Ag0.5Cu solder have been subjected to variety of thermal aging conditions including 60°C, 85°C and 125°C for periods of time between 1-week and 2-months, thermal cycling from −55°C to 125°C, −40°C to 95°C and 3°C to 100°C. The presented methodology uses leading indicators of failure based on microstructural evolution of damage to identify accrued damage in electronic systems subjected to sequential stresses of thermal aging and thermal cycling. Damage equivalency relationships have been developed to map damage accrued in thermal aging to the reduction in thermo-mechanical cyclic life based on damage proxies. Accrued damage between different thermal cyclic magnitudes has also been mapped for from −55°C to 125°C, −40°C to 95°C and 3°C to 100°C thermal cycles. The presented method for interrogation of the accrued damage for the field deployed electronics, significantly prior to failure, may allow insight into the damage initiation and progression of the deployed system. The expected error with interrogation of system state and assessment of residual life has been quantified.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000128-000133 ◽  
Author(s):  
Hongwen Zhang ◽  
Jonathan Minter ◽  
Ning-Cheng Lee

Abstract BiAgX® paste with the remelting temperature around 262°C has been tested and adopted successfully for die attach applications [1–5]. BiAgX® HT pastes with the enhanced remelting temperature above 265°C have been designed for the application of 200°C or even higher. The joint strength has been well maintained for most of the tested pastes after thermal aging @ 200°C for 1000hrs. The thermal cycling test (from −55°C to 200°C) degrades the bond shear strength but some of the tested pastes can still keep the joint strength well above IEC standard (IEC 60749-19) required. The melting temperature and the reliability have been observed to closely associate with the alloying elements Z%wt. The BiAgX® pastes have also been modified for board level assembly application. BiAgX® solder wire is under development too.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000119-000126 ◽  
Author(s):  
HongWen Zhang ◽  
Ning-Cheng Lee

In the current work, a mixed solder powder BiAgX solder paste system with the melting temperature above 260°C and the comparable or even better reliability to the high lead solders has been studied. The mixed solder powder paste system is composed of a high melting first alloy solder powder as majority and the additive solder powder as minority. The additive solder is designed to react aggressively with various surface finish materials before or together with the melting of the majority solder to form a controllable IMC layer. The IMC layer of the mixed powder system is controllable by the species and the quantity of the additive solder and it is observed to be insensitive to thermal aging and thermal cycling in current tests while the high lead ones do show a considerable increase in IMC layer thickness. Microstructure investigation shows the fishbone shape IMC layer interlocks the bonding interface between solder and components. Both micron-sized and nano-sized Ag-rich precipitations in the joints have been observed to be well distributed in the joint. The exposed Ag-rich particles and the surrounding stepwise pattern in Bi matrix on the fracture surface indicate that these Ag-rich particles constrain the dislocation movement in Bi matrix thus enhance the strength and the ductility of the joint. Under thermal aging and thermal cycling, both the micron-sized and nano-sized Ag-rich precipitations exhibit only discernible and localized coarsening. The stable interfacial IMC together with the existence of the well dispersed Ag-rich particles are attributed to the promising reliability in BiAgX solder paste system.


Author(s):  
Nathan Schroeder ◽  
Kevin Albrecht

Abstract Falling particle receiver (FPR) systems are a rapidly developing technology for concentrating solar power applications. Solid particles are used as both the heat transfer fluid and system thermal energy storage media. Through the direct irradiation of the solid particles, flux and temperature limitations of tube-bundle receives can be overcome, leading to higher operating temperatures and energy conversion efficiencies. Candidate particles for FPR systems must be resistant to changes in optical properties during long term exposure to high temperatures and thermal cycling using highly concentrated solar irradiance. Five candidate particles, CARBOBEAD HSP 40/70, CARBOBEAD CP 40/100, including three novel particles, CARBOBEAD MAX HD 35, CARBOBEAD HD 350, and WanLi Diamond Black, were tested using simulated solar flux cycling and tube furnace thermal aging. Each particle candidate was exposed for 10 000 cycles (simulating the exposure of a 30-year lifetime) using a shutter to attenuate the solar simulator flux. Feedback from a pyrometer temperature measurement of the irradiated particle surface was used to control the maximum temperatures of 775 °C and 975 °C. Particle solar-weighted absorptivity and emissivity were measured at 2000 cycle intervals. Particle thermal degradation was also studied by heating particles to 800 °C, 900 °C, and 1000 °C for 300 hours in a tube furnace purged with bottled unpurified air. Here particle absorptivity and emissivity were measured at 100-hour intervals. Measurements taken after irradiance cycling and thermal aging were compared to measurements taken from as-received particles. WanLi Diamond Black particles had the highest initial value for solar weighted absorptance, 96%, but degraded up to 4% in irradiance cycling and 6% in thermal aging. CARBOBEAD HSP 40/70 particles currently in use in the prototype FPR at the National Solar Thermal Test Facility had an initial value of 95% solar absorptance with up to a 1% drop after irradiance cycling and 4% drop after 1000 °C thermal aging.


2005 ◽  
Vol 152 ◽  
pp. 97-104 ◽  
Author(s):  
K. Scott Weil ◽  
Christopher A. Coyle ◽  
Jens T. Darsell ◽  
Gordon G. Xia ◽  
John S. Hardy

Sign in / Sign up

Export Citation Format

Share Document