Damage Pre-Cursors Based Prognostication of Accrued Damage and Assessment of Operational Readiness of Leadfree Electronics

Author(s):  
Pradeep Lall ◽  
Mahendra Harsha ◽  
Jeff Suhling ◽  
Kai Goebel

Electronics in high reliability applications may be stored for extended periods of time prior to deployment. Prior studies have shown the elastic modulus and ultimate tensile strength of the SAC leadfree alloys reduces under prolonged exposure to high temperatures [Zhang 2009]. The thermal cycle magnitudes may vary over the lifetime of the product. Long-life systems may be re-deployed several times over the use life of the product. Previously, the authors have identified damage pre-cursors for correlation of the damage progression with the microstructural evolution of damage in second level interconnects [Lall 2004a-d, 2005a-b, 2006a-f, 2007a-e, 2008a-f, 2009a-d, 2010a-j]. Leadfree assemblies with Sn3Ag0.5Cu solder have been subjected to variety of thermal aging conditions including 60°C, 85°C and 125°C for periods of time between 1-week and 2-months, thermal cycling from −55°C to 125°C, −40°C to 95°C and 3°C to 100°C. The presented methodology uses leading indicators of failure based on microstructural evolution of damage to identify accrued damage in electronic systems subjected to sequential stresses of thermal aging and thermal cycling. Damage equivalency relationships have been developed to map damage accrued in thermal aging to the reduction in thermo-mechanical cyclic life based on damage proxies. Accrued damage between different thermal cyclic magnitudes has also been mapped for from −55°C to 125°C, −40°C to 95°C and 3°C to 100°C thermal cycles. The presented method for interrogation of the accrued damage for the field deployed electronics, significantly prior to failure, may allow insight into the damage initiation and progression of the deployed system. The expected error with interrogation of system state and assessment of residual life has been quantified.

Author(s):  
Pradeep Lall ◽  
Rahul Vaidya ◽  
Vikrant More ◽  
Kai Goebel

Deployed electronic systems may be subjected to cyclic thermo-mechanical loads during storage and subsequent to deployment. Aging has been previously shown to affect the reliability and constitutive behavior of second-level leadfree interconnects. Prognostication of accrued damage and assessment of residual life is extremely critical for ultra-high reliability systems in which the cost of failure is too high. The presented methodology uses leading indicators of failure based on micro-structural evolution of damage to identify impending failure in electronic systems subjected to sequential stresses of thermal aging and thermal cycling. The methodology has been demonstrated on area-array ball-grid array test assemblies with Sn3Ag0.5Cu interconnects subjected to thermal aging at 125°C and thermal cycling from −55 to 125°C for various lengths of time and cycles. Damage equivalency methodologies have been developed to map damage accrued in thermal aging to the reduction in thermo-mechanical cyclic life based on damage proxies. Prognostic metrics including α-λ metric, sample standard deviation, mean square error, mean absolute percentage error, average bias, relative accuracy, and cumulative relative accuracy have been used to compare the performance of the damage proxies.


Author(s):  
Pradeep Lall ◽  
Mahendra Harsha ◽  
Jeff Suhling ◽  
Kai Goebel ◽  
Jim Jones

Field deployed electronics may accrue damage due to environmental exposure and usage after finite period of service but may not often have any macro-indicators of failure such as cracks or delamination. A method to interrogate the damage state of field deployed electronics in the pre-failure space may allow insight into the damage initiation, progression, and remaining useful life of the deployed system. Aging has been previously shown to effect the reliability and constitutive behavior of second-level leadfree interconnects. Prognostication of accrued damage and assessment of residual life can provide valuable insight into impending failure. In this paper, field deployed parts have been extracted and prognosticated for accrued damage and remaining useful life in an anticipated future deployment environment. A subset of the field deployed parts have been tested to failure in the anticipated field deployed environment to validate the assessment of remaining useful life. In addition, some parts have been subjected to additional know thermo-mechanical stresses and the incremental damage accrued validated with respect to the amount of additional damage imposed on the assemblies. The presented methodology uses leading indicators of failure based on micro-structural evolution of damage to identify accrued damage in electronic systems subjected to sequential stresses of thermal aging and thermal cycling. Damage equivalency methodologies have been developed to map damage accrued in thermal aging to the reduction in thermo-mechanical cyclic life based on damage proxies. The expected error with interrogation of system state and assessment of residual life has been quantified. Prognostic metrics including α-λ metric, sample standard deviation, mean square error, mean absolute percentage error, average bias, relative accuracy, and cumulative relative accuracy have been used to compare the performance of the damage proxies.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000119-000126 ◽  
Author(s):  
HongWen Zhang ◽  
Ning-Cheng Lee

In the current work, a mixed solder powder BiAgX solder paste system with the melting temperature above 260°C and the comparable or even better reliability to the high lead solders has been studied. The mixed solder powder paste system is composed of a high melting first alloy solder powder as majority and the additive solder powder as minority. The additive solder is designed to react aggressively with various surface finish materials before or together with the melting of the majority solder to form a controllable IMC layer. The IMC layer of the mixed powder system is controllable by the species and the quantity of the additive solder and it is observed to be insensitive to thermal aging and thermal cycling in current tests while the high lead ones do show a considerable increase in IMC layer thickness. Microstructure investigation shows the fishbone shape IMC layer interlocks the bonding interface between solder and components. Both micron-sized and nano-sized Ag-rich precipitations in the joints have been observed to be well distributed in the joint. The exposed Ag-rich particles and the surrounding stepwise pattern in Bi matrix on the fracture surface indicate that these Ag-rich particles constrain the dislocation movement in Bi matrix thus enhance the strength and the ductility of the joint. Under thermal aging and thermal cycling, both the micron-sized and nano-sized Ag-rich precipitations exhibit only discernible and localized coarsening. The stable interfacial IMC together with the existence of the well dispersed Ag-rich particles are attributed to the promising reliability in BiAgX solder paste system.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianguo Cui ◽  
Keke Zhang ◽  
Di Zhao ◽  
Yibo Pan

AbstractThrough ultrasonic wave assisted Sn2.5Ag0.7Cu0.1RExNi/Cu (x = 0, 0.05, 0.1) soldering test and − 40 to 125 °C thermal shock test, the microstructure and shear properties of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling were studied by the SEM, EDS and XRD. The results show that the Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints with high quality and high reliability can be obtained by ultrasonic assistance. When the ultrasonic vibration power is 88 W, the ultrasonic-assisted Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu solder joints exhibits the optimized performance. During the thermal cycling process, the shear strength of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had a linear relationship with the thickness of interfacial intermetallic compound (IMC). Under the thermal cycling, the interfacial IMC layer of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints consisted of (Cu,Ni)6Sn5 and Cu3Sn. The thickness of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints was linearly related to the square root of equivalent time. The growth of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had an incubation period, and the growth of IMC was slow within 300 cycles. And after 300 cycles, the IMC grew rapidly, the granular IMC began to merge, and the thickness and roughness of IMC increased obviously, which led to a sharp decrease in the shear strength of the solder joints. The 0.05 wt% Ni could inhibit the excessive growth of IMC, improve the shear strength of solder joints and improve the reliability of solder joints. The fracture mechanism of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints changed from the ductile–brittle mixed fracture in the solder/IMC transition zone to the brittle fracture in the interfacial IMC.


2013 ◽  
Vol 462-463 ◽  
pp. 654-657
Author(s):  
Jian An Lou ◽  
Yang Li ◽  
Jian Hua Yu

With the continuous improvement of the complexity of the microelectronic system, its reliability risk is becoming more and more obvious. In order to improve the reliability of electronic systems in complex electromagnetic environment, this paper proposes a new fault self-repairing method; the idea is to realize controllable silicon evolution on the FPGA. A MicroBlaze CPU and VRC array are designed, and the CPU runs the evolutionary algorithm to configure the VRC array, dynamically changing the structure and function of the circuit, so as to obtain high reliability of the digital fault self-repairing circuit. Evolving fault self-repairing technology provides a new way for the high reliability of the digital system design.


Sign in / Sign up

Export Citation Format

Share Document