An OEMS study of trap states at the active layer interface with the substrate in ion implanted GaAs MESFETs

Author(s):  
Chi-Hsin Chiu ◽  
J.G. Swanson
2016 ◽  
Vol 16 (4) ◽  
pp. 3248-3253 ◽  
Author(s):  
Eiji Itoh ◽  
Yoshinori Goto ◽  
Yusuke Saka ◽  
Katsutoshi Fukuda

We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethylammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.


1984 ◽  
Vol 20 (9) ◽  
pp. 376 ◽  
Author(s):  
D. Arnold ◽  
R. Fischer ◽  
J. Klem ◽  
F. Ponse ◽  
H. Morkoç

1991 ◽  
Vol 241 ◽  
Author(s):  
D. C. Look ◽  
J. E. Hoelscher ◽  
J. T. Grant ◽  
C. E. Stutz ◽  
K. R. Evans ◽  
...  

ABSTRACTIt has recently been shown that a 1000Å cap layer of molecular beam epitaxial (MBE) GaAs grown at 200°C passivates the surface of a GaAs active layer (n≃2×1017cm−3) in the sense of reducing the free–carrier depletion which arises from surface acceptor states. The same phenomenon holds for active-layer concentrations up to 7×1018cm−3, for caps as thin as 14Å, and for either As2 or As4 anion species. In an attempt to understand these effects, we have applied photoreflectance (PR) and x–ray photoelectron spectroscopy (XPS). In general, the PR shows contributions from the surface, cap/active–layer interface, and active–layer/buffer–layer interface, because each of these regions can have a different electric field. In fact the various field strengths can be determined from Franz–Keldysh oscillations (FKO), and good agreement with Hall–effect measurements is usually found. However, for 200°C material, no PR is seen, suggesting that there is no surface charge (no surface acceptor states below the Fermi level) or at least no surface–charge modulation by the light. The XPS data, which arise only from the near–surface (∼30Å) region, show that the binding energies in the capped samples are increased (i.e., surface Fermi pinning energy decreased) by 0.2 eV with respect to those in the uncapped samples. These data are discussed in relation to a passivation model.


2020 ◽  
Vol 3 (4) ◽  
pp. 3282-3292 ◽  
Author(s):  
Manon Spalla ◽  
Lara Perrin ◽  
Emilie Planes ◽  
Muriel Matheron ◽  
Solenn Berson ◽  
...  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012111
Author(s):  
A S Mazinov ◽  
V S Gurchenko ◽  
A S Tyutyunik ◽  
V Y Ilina ◽  
A I Dmitriev

Abstract This paper presents the results of using hybrid-organic zinc complex C24H24N6O3Zn as a component for creating fullerene C60-based heterostructures. The synthesis technique of the complex compound, the microscopy of the film surfaces obtained, their optical and luminescence properties are described in the paper. The introduction of zinc complex to fullerene shows that there occurs a potential barrier at the active layer interface. The obtained thin-film structures have rectifying light volt-ampere characteristics.


2015 ◽  
Vol 17 (41) ◽  
pp. 27690-27697 ◽  
Author(s):  
Mukesh Kumar ◽  
Ashish Dubey ◽  
Khan Mamun Reza ◽  
Nirmal Adhikari ◽  
Qiquan Qiao ◽  
...  

This article sheds some light on the origin of photogenerated carrier recombination at the metal–active layer interface in bulk heterojunction solar cells.


Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
J.A. Lambert ◽  
P.S. Dobson

The defect structure of ion-implanted silicon, which has been annealed in the temperature range 800°C-1100°C, consists of extrinsic Frank faulted loops and perfect dislocation loops, together with‘rod like’ defects elongated along <110> directions. Various structures have been suggested for the elongated defects and it was argued that an extrinsically faulted Frank loop could undergo partial shear to yield an intrinsically faulted defect having a Burgers vector of 1/6 <411>.This defect has been observed in boron implanted silicon (1015 B+ cm-2 40KeV) and a detailed contrast analysis has confirmed the proposed structure.


Author(s):  
A. K. Rai ◽  
P. P. Pronko

Several techniques have been reported in the past to prepare cross(x)-sectional TEM specimen. These methods are applicable when the sample surface is uniform. Examples of samples having uniform surfaces are ion implanted samples, thin films deposited on substrates and epilayers grown on substrates. Once device structures are fabricated on the surfaces of appropriate materials these surfaces will no longer remain uniform. For samples with uniform surfaces it does not matter which part of the surface region remains in the thin sections of the x-sectional TEM specimen since it is similar everywhere. However, in order to study a specific region of a device employing x-sectional TEM, one has to make sure that the desired region is thinned. In the present work a simple way to obtain thin sections of desired device region is described.


Sign in / Sign up

Export Citation Format

Share Document