Printing of Dental Works from Cobalt-Chrome Metal Powder and Composite Material

Author(s):  
Tulica Alexandru-Constantin ◽  
Druga Corneliu-Nicolae ◽  
Serban Ionel
2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040010
Author(s):  
Hsu-Chiang Kuan ◽  
Chin-Lung Chiang ◽  
Ming-Yuan Shen ◽  
Chen-Feng Kuan

In this study, we combine the coffee slag, metal powder with recycled petrochemical plastics (polystyrene, PS) to prepare circulation composite materials. It is an energy saving and carbon footprint reduction composite material compared with traditional one. The resulted PS/coffee composite has tensile strength 117.5 kgf/cm2 and flexural strength is 314.2 kgf/cm2. The heat deflection temperature (HDT) is 92[Formula: see text]C and the UV test fits the ASTM G154 requirement. The metal gross composite is with tensile strength 318.8 kgf/cm2 and flexural strength is 581.6 kgf/cm2. The HDT is 91[Formula: see text]C and the UV test fits the ASTM G154 requirement as well. Its reuse ratio can reach 85% for recycled PS. The resultant product has metal texture blinds with metal gross and wood-like blinds with coffee aroma flavor.


2016 ◽  
Vol 36 (7) ◽  
pp. 705-712 ◽  
Author(s):  
Karolina Głogowska ◽  
Janusz W. Sikora ◽  
Branislav Duleba

Abstract The extensive research on polymer composites is motivated by the fact that it can result in obtaining new materials with enhanced properties. This research primarily focuses on investigating basic mechanical properties which determine the use of a particular composite material. This paper presents the results of tests investigating the mechanical properties, i.e. tensile strength, hardness and impact strength, of hybrid injection mouldings produced at constant processing parameters. We used five metal powder fillers: aluminium, zinc, tin, iron and copper powders, with their contents ranging from 2.5 wt% to 15 wt% relative to a polypropylene matrix composite material. The relationships were determined between different contents of the aforementioned metal powder fillers and Young’s modulus, maximum tensile stress, tensile stress at break, strains, Shore hardness and Charpy impact strength. The research also involved investigating mould shrinkage. Relevant conclusions were drawn.


Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


1983 ◽  
Vol 71 (9-10) ◽  
pp. 219-222
Author(s):  
S. Coletti ◽  
J. Exbrayat ◽  
F. Montheillet
Keyword(s):  

2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


2020 ◽  
Vol 1 (12) ◽  
pp. 36-39
Author(s):  
L. V. Iyashvili ◽  
Yu. A. Vinnichenko ◽  
A. V. Vinnichenko

The purpose of the study is a quantitative assessment of the yield of dentinal fluid on the surface of the treated dentin of the tooth when restoring its structure with a composite filling material. To achieve this goal, digital images of the coronal parts of the teeth having formed carious cavities were used; virtual models of hard tissues of teeth recreated using specialized computer programs; A computer program that provides the ability to accurately determine the area of the treated dentin tooth. The results made it possible to draw the following conclusions: with an increase in the depth of the carious cavity, the amount of dentin fluid that can stand out on its surface (1–2 mm from the tooth cavity) sharply increases; with an increase in the area of the formed carious cavity (more than 30 mm2), the risk of release of a critical mass of dentinal fluid (more than 0.4 mg), which can adversely affect the strength of the adhesive interaction between the composite material and the hard tissues of the tooth, increases significantly; the same dynamics is observed with increasing time, at which there is the possibility of free exit of dentinal fluid to the surface of the cavity prepared for filling (more than 45 seconds).


Sign in / Sign up

Export Citation Format

Share Document