Influence of Slope on Thermal Index Calculations During Accelerated Aging Tests

Author(s):  
Brad Greaves ◽  
Thomas Prevost ◽  
Ed Casserly ◽  
Juan Acosta ◽  
Andy Holden
2014 ◽  
Vol 1 (1) ◽  
pp. 24-34
Author(s):  
Alireza K. ◽  
Hossein Ahmadi ◽  
Mohsen Mohammadi

Lubricants and leather dressings are the most common treatments of dry and water logged historical leathers. Color change has a great importance during the time and treatment process, due to visual and aesthetic values of historic leather relics. Polyethylene glycol (PEG) and silicone oil (SiO) are frequently used leather dressings in the conservation procedures. Therefore, color stability of treated leathers with PEG and SiO were investigated before and after heat accelerated aging. Moreover, application of ascorbic acid was evaluated as an antioxidant additive for PEG (PEG+AA).Color change after treatment and aging were studied by colorimetry technique in the CIE *L*a*b system. Results indicated to severe color alteration in PEG treated and aged leathers with or without ascorbic acid. Whereas, SiO treated samples showed better stability and minimum color shift after aging. Silicone oil was characterized as the best dressing for historical leathers with compared to PEG and PEG+AA, due to its high stability and aesthetical properties.


2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


2007 ◽  
Author(s):  
DEBRA A. WROBLESKI ◽  
DAVID A. LANGLOIS ◽  
E. BRUCE ORLER ◽  
ANDREA LABOURIAU ◽  
MARIANA M. URIBE ◽  
...  
Keyword(s):  

2011 ◽  
Vol 3 (3) ◽  
pp. 126-129 ◽  
Author(s):  
Zahra RASTEGAR ◽  
Mohammad SEDGHI ◽  
Saeid KHOMARI


Author(s):  
Alejandro Márquez-Salinas ◽  
Carlos A Fermín-Martínez ◽  
Neftalí Eduardo Antonio-Villa ◽  
Arsenio Vargas-Vázquez ◽  
Enrique C. Guerra ◽  
...  

Abstract Background Chronological age (CA) is a predictor of adverse COVID-19 outcomes; however, CA alone does not capture individual responses to SARS-CoV-2 infection. Here, we evaluated the influence of aging metrics PhenoAge and PhenoAgeAccel to predict adverse COVID-19 outcomes. Furthermore, we sought to model adaptive metabolic and inflammatory responses to severe SARS-CoV-2 infection using individual PhenoAge components. Methods In this retrospective cohort study, we assessed cases admitted to a COVID-19 reference center in Mexico City. PhenoAge and PhenoAgeAccel were estimated using laboratory values at admission. Cox proportional hazards models were fitted to estimate risk for COVID-19 lethality and adverse outcomes (ICU admission, intubation, or death). To explore reproducible patterns which model adaptive responses to SARS-CoV-2 infection, we used k-means clustering using PhenoAge components. Results We included 1068 subjects of whom 222 presented critical illness and 218 died. PhenoAge was a better predictor of adverse outcomes and lethality compared to CA and SpO2 and its predictive capacity was sustained for all age groups. Patients with responses associated to PhenoAgeAccel>0 had higher risk of death and critical illness compared to those with lower values (log-rank p<0.001). Using unsupervised clustering we identified four adaptive responses to SARS-CoV-2 infection: 1) Inflammaging associated with CA, 2) metabolic dysfunction associated with cardio-metabolic comorbidities, 3) unfavorable hematological response, and 4) response associated with favorable outcomes. Conclusions Adaptive responses related to accelerated aging metrics are linked to adverse COVID-19 outcomes and have unique and distinguishable features. PhenoAge is a better predictor of adverse outcomes compared to CA.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1256
Author(s):  
Ivan Y. Iourov ◽  
Yuri B. Yurov ◽  
Svetlana G. Vorsanova ◽  
Sergei I. Kutsev

Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1103
Author(s):  
Sara Sarraj ◽  
Małgorzata Szymiczek ◽  
Tomasz Machoczek ◽  
Maciej Mrówka

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood–plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers’ impact (ground coffee waste (GCW), walnut shell (WS), brewers’ spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material’s properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler’s type, chemical composition, and grain size on the obtained materials’ properties and shed light on the possibility of acquiring ecological silicone-based materials.


Sign in / Sign up

Export Citation Format

Share Document