Reliability Assessment of the Dependence of MOSFET Transistors on the Thermal Resistance of the Cooling System

Author(s):  
Prodan Ivanov Prodanov
Author(s):  
Seyyed Khandani ◽  
Himanshu Pokharna ◽  
Sridhar Machiroutu ◽  
Eric DiStefano

Remote heat pipe based heat exchanger cooling systems are becoming increasingly popular in cooling of notebook computers. In such cooling systems, one or more heat pipes transfer the heat from the more populated area to a location with sufficient space allowing the use of a heat exchanger for removal of the heat from the system. In analsysis of such systems, the temperature drop in the condenser section of the heat pipe is assumed negligible due to the nature of the condensation process. However, in testing of various systems, non linear longitudinal temperature drops in the heat pipe in the range of 2 to 15 °C, for different processor power and heat exchanger airflow, have been measured. Such temperature drops could cause higher condenser thermal resistance and result in lower overall heat exchanger performance. In fact the application of the conventional method of estimating the thermal performance, which does not consider such a nonlinear temperature variations, results in inaccurate design of the cooling system and requires unnecessarily higher safety factors to compensate for this inaccuracy. To address the problem, this paper offers a new analytical approach for modeling the heat pipe based heat exchanger performance under various operating conditions. The method can be used with any arbitrary condenser temperature variations. The results of the model show significant increase in heat exchanger thermal resistance when considering a non linear condenser temperature drop. The experimental data also verifies the result of the model with sufficient accuracy and therefore validates the application of this model in estimating the performance of these systems.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


Author(s):  
Lei Wang ◽  
Xudong Zhang ◽  
Dr. Jing Liu ◽  
Yixin Zhou

Abstract Liquid metal owns the highest thermal conductivity among all the currently available fluid materials. This property enables it to be a powerful coolant for the thermal management of large power device or high flux chip. In this paper, a high-efficiency heat dissipation system based on the electromagnetic driven rotational flow of liquid metal was demonstrated. The velocity distribution of the liquid metal was theoretically analyzed and numerically simulated. The results showed that the velocity was distributed unevenly along longitudinal section and the maximum velocity appears near the anode. On the temperature distribution profile of the heat dissipation system, the temperature on the electric heater side was much higher than the other regions and the role of the rotated liquid metal was to homogenize the temperature of the system. In addition, the thermal resistance model of the experimental device was established, and several relationships such as thermal resistance-power curve were experimentally measured. The heating power could be determined from the temperature-power relationship graph once the maximum control temperature was given. The heat dissipation method introduced in the paper provides a novel way for fabricating compact chip cooling system.


Author(s):  
Osamu Suzuki ◽  
Atsuo Nishihara

A novel electronics cooling system that uses water heat pipes under an ambient temperature range from −30°C to 40°C has been developed. The system consists of several water heat pipes, air-cooled fins, and a metal block. The heat pipes are separated into two groups according to the thermal resistance of their fins. One set of heat pipes, which have fins with higher thermal resistance, operates under an ambient temperature range from −30°C to 40°C. The other set, which have lower resistance, operates from 0°C to 40°C. A prediction model based on the frozen-startup limitation of a single heat pipe was first devised and experimentally verified. Then, a prediction model for the whole-system was formulated according to the former model. The whole-system model was used to design a prototype cooling system, and it was confirmed that the prototype has a suitable cooling performance for an environmentally friendly electronics cooling system.


Author(s):  
Sudipta Saha ◽  
Amitav Tikadar ◽  
Jamil Khan ◽  
Tanvir Farouk

Abstract With an escalating need to find ways to reduce the water consumption in industrial cooling system, on-demand hybrid cooling has been a topic of great interest. The main concept of this cooling method is centered upon the utilization of huge exchange of enthalpy associated with phase change process in a conventional convective cooling system. In this study, a multidimensional multi-physics model has been employed to study a system that undergoes this dual mode cooling process where both convection and evaporation contribute to the heat transfer process. The computational domain considered is comprised of a thin liquid film that undergoes evaporation with constant heat flux provided from the bottom and a convective loading of laminar air flow above it. Evaporation takes place at the liquid-gas interface and the evaporated mass is being carried away by the incoming air, hence augmenting the convective cooling through the phase change process. This is an extension of our prior work where the surface structure modification (i.e. undulated surface) on the performance of this proposed hybrid cooling method is numerically investigated. Array of hemispherical structures have been introduced as the surface introducing the heat flux to the liquid film. The objective is to increase the surface to volume ratio and decrease the thermal resistance across the liquid film. The predictions indicate that with the increase in the height of the undulated surface the thermal resistance across the liquid film tends to decrease. Results from these simulations show that a ∼50% reduction in the thermal resistance can be achieved by the surface structure modification while the net evaporation flux can be doubled compared to a flat film configuration.


Author(s):  
Koichi Mashiko ◽  
Masataka Mochizuki ◽  
Yuji Saito ◽  
Yasuhiro Horiuchi ◽  
Thang Nguyen ◽  
...  

Recently energy saving is most important concept for all electric products and production. Especially, in Data-Center cooling system, power consumption of current air cooling system is increasing. For not only improving thermal performance but also reducing electric power consumption of this system, liquid cooling system has been developed. This paper reports the development of cold plate technology and vapor chamber application by using micro-channel fin. In case of cold plate application, micro-channel fin technology is good for compact space design, high thermal performance, and easy for design and simulation. Another application is the evaporating surface for vapor chamber. The well-known devices for effective heat transfer or heat spreading with the lowest thermal resistance are heat pipes and vapor chamber, which are two-phase heat transfer devices with excellent heat spreading and heat transfer characteristics. Normally, vapor chamber is composed of sintered power wick. Vapor chamber container is mechanically supported by stamped pedestal or wick column or solid column, but the mechanical strength is not enough strong. So far, the application is limited in the area of low strength assembly. Sometime the mechanical supporting frame is design for preventing deformation. In this paper, the testing result of sample is described that thermal resistance between the heat source and the ambient can be improved approximately 0.1°C/W by using the micro-channel vapor chamber. Additionally, authors presented case designs using vapor chamber for cooling computer processors, and proposed ideas of using micro-channel vapor chamber for heat spreading to replace the traditional metal plate heat spreader.


Author(s):  
Anjali Chauhan ◽  
Bahgat Sammakia ◽  
Kanad Ghose ◽  
Gamal Refai-Ahmed ◽  
Dereje Agonafer

The stacking of processing and memory components in a three-dimensional (3D) configuration enables the implementation of processing systems with small form factors. Such stacking shortens the interconnection length between processing and memory components to dramatically lower the memory access latencies, and contributes to significant improvements in the memory access bandwidth. Both of these factors elevate overall system performance to levels that are not realizable with prevailing and other proposed solutions. The shorter interconnection lengths in stacked architectures also enable the use of smaller drivers for the interconnections, which in turn reduces interconnection-level energy dissipations. On the down side, stacking of processing and memory components introduces a significant thermal management challenge that is rooted in the high thermal resistance of stacked designs. This paper examines and evaluates three distinct solutions that address thermal management challenges in a system that stacks DRAM components onto a processing core. We primarily focus on three different configurations of a microchannel-based single-phase liquid cooling system with a traditional air-cooled heat sink. Our evaluations, which are intended to study the limits of each solution, assume a uniform power dissipation model for the processor and accounts for the thermal resistance offered by the thermal interface material (TIM), the interconnect layer, and through-silicon vias (TSVs). The liquid-cooled microchannel heat sink shows more promising results when integrated into the package than when added to the microprocessor package from outside.


Author(s):  
Qun Chen ◽  
Moran Wang ◽  
Ning Pan ◽  
Zeng-Yuan Guo

Using the analogy between heat and mass transfer processes, the recently developed entransy theory is extended in this paper to tackle the coupled heat and mass transfer processes so as to analyze and optimize the performance of evaporative cooling systems. We first introduce a few new concepts including the moisture entransy, moisture entransy dissipation, and the thermal resistance in terms of the moisture entransy dissipation. Thereinafter, the moisture entransy is employed to describe the endothermic ability of a moist air. The moisture entransy dissipation on the other hand is used to measure the loss of the endothermic ability, i.e. the irreversibility, in the coupled heat and mass transfer processes, which consists of three parts: (1) the sensible heat entransy dissipation, (2) the latent heat entransy dissipation, and (3) the entransy dissipation induced by a temperature potential. And then the new thermal resistance, defined as the moisture entransy dissipation rate divided by the squared refrigerating effect output rate, is recommended as an index to effectively reflect the performance of the evaporative cooling system. Meanwhile, a minimum thermal resistance law for optimizing the evaporative cooling systems is developed. In the end, several direct and indirect evaporative cooling processes are analyzed to illustrate the applications of the proposed concepts.


Sign in / Sign up

Export Citation Format

Share Document