Mechanical behaviour of typical lead-free solders at high strain rate conditions

Author(s):  
K. Meier ◽  
M. Roellig ◽  
S. Wiese ◽  
K.-J. Wolter
2007 ◽  
Vol 460-461 ◽  
pp. 595-603 ◽  
Author(s):  
Daewoong Suh ◽  
Dong W. Kim ◽  
Pilin Liu ◽  
Hyunchul Kim ◽  
Jessica A. Weninger ◽  
...  

2008 ◽  
Vol 32 ◽  
pp. 99-102
Author(s):  
Ranjan Rajoo ◽  
Erich H. Kisi ◽  
D.J. O'Connor

This paper presents data obtained from a newly-developed instrument to test the quality of solder interconnections at high strain rate – the ‘micro-impactor’. This shear test of the interconnection at high strain rate mimics the stress experienced by the solder joint when undergoing shock due to drop-impact. Instrumented with a load cell and linear variable displacement transducer (LVDT), it also has the ability to provide dynamic impact force and displacement data. Earlier concepts to characterise the solder joint at high strain rates such as the miniature pendulum impact tester [1] lacked this capability. This micro-impactor was used to study the effect of increasing silver (Ag) and copper (Cu) concentration in solder alloys on the shear strength of the solder joint. The performance of these lead-free alloys was also compared to that of the well-established leaded solder. It was found that increasing the silver content increases the yield strength of the solder, causing the failure to occur at the brittle intermetallic layer instead of in the bulk of the solder.


Author(s):  
Yuvraj Singh ◽  
Anirudh Udupa ◽  
Srinivasan Chandrasekar ◽  
Ganesh Subbarayan

Abstract Studies on medium to high strain-rate characterization (≥ 0.1s−1) of lead-free solder are relatively few, primarily due to the lack of available methods for testing. Prior work in literature uses Split Hopkinson Bar (SPHB) experiments for high strain-rate characterization (≥ 300s−1) [1,2], while a modified micro-scale tester is used for medium strain-rate characterization (0.005s−1 to 300s−1) [3] and an impact hammer test setup for testing in a strain-rate regime from 1s−1 to 100s−1 [4]. However, there is still limited data in strain-rate regimes of relevance, specifically for drop shock applications. In this paper, we present orthogonal metal cutting as a novel method to characterize lead-free solder alloys. Experiments are carried out using a wedgelike tool that cuts through a work piece at a fixed depth and rake angle while maintaining a constant cutting velocity. These experiments are conducted at room temperature on Sn1.0Ag0.5Cu bulk test specimens with strain-rates varying from 0.32 to 48s−1. The range of strain-rates is only limited by the ball screw driven slide allowing higher strain-rates if needed. The strains and strain-rates are captured through Particle Image Velocimetry (PIV) using sequential images taken from a high-speed camera just ahead of the cutting tool. The PIV enables non-contact recording of high strain-rate deformations, while the dynamometer on the cutting head allows one to capture the forces exerted during the cutting process. Results for the stress-strain response obtained through the experiments are compared to prior work for validation. Orthogonal metal cutting is shown to be a potentially attractive method for characterization of solder at higher strain-rates.


2013 ◽  
Vol 49 ◽  
pp. 657-666 ◽  
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni ◽  
Nicoletta Tesio ◽  
Carlo Albertini

2009 ◽  
Vol 77 (1) ◽  
Author(s):  
Fei Qin ◽  
Tong An ◽  
Na Chen

As traditional lead-based solders are banned and replaced by lead-free solders, the drop impact reliability is becoming increasingly crucial because there is little understanding of mechanical behaviors of these lead-free solders at high strain rates. In this paper, mechanical properties of one lead-based solder, Sn37Pb, and two lead-free solders, Sn3.5Ag and Sn3.0Ag0.5Cu, were investigated at strain rates that ranged from 600 s−1 to 2200 s−1 by the split Hopkinson pressure and tensile bar technique. At high strain rates, tensile strengths of lead-free solders are about 1.5 times greater than that of the Sn37Pb solder, and also their ductility are significantly greater than that of the Sn37Pb. Based on the experimental data, strain rate dependent Johnson–Cook models for the three solders were derived and employed to predict behaviors of solder joints in a board level electronic package subjected to standard drop impact load. Results indicate that for the drop impact analysis of lead-free solder joints, the strain rate effect must be considered and rate-dependent material models of lead-free solders are indispensable.


Author(s):  
Pradeep Lall ◽  
Geeta Limaye ◽  
Sandeep Shantaram ◽  
Jeff Suhling

Industry migration to lead-free solders has resulted in a proliferation of a wide variety of solder alloy compositions. The most popular amongst these are the Tin-Silver-Copper (Sn-Ag-Cu or SAC) family of alloys like SAC105, SAC305 etc. Recent studies have highlighted the detrimental effects of isothermal aging on the material properties of these alloys. SAC alloys have shown up to 50% reduction in their initial elastic modulus and ultimate tensile strength within a few months of elevated temperature aging. This phenomenon has posed a severe design challenge across the industry and remains a road-block in the migration to Pb-free. Multiple compositions with additives to SAC have been proposed to minimize the effect of aging and creep while maintaining the melting temperatures, strength and cost at par with SAC. Innolot is a newly developed high-temperature, high-performance lead-free substitute by InnoRel™ targeting the automotive electronics segment. Innolot contains Nickel (Ni), Antimony (Sb) and Bismuth (Bi) in small proportions in addition to Sn, Ag and Cu. The alloy has demonstrated enhanced reliability under thermal cycling as compared to SAC alloys. In this paper, the high strain rate material properties of Innolot have been evaluated as the alloy ages at an elevated temperature of 50°C. The strain rates chosen are in the range of 1–100 per-second which are typical at second level interconnects subjected to drop-shock environments. The strain rates and elevated aging temperature have been chosen also to correspond to prior tests conducted on SAC105 and SAC305 alloys at this research center. This paper presents a comparison of material properties and their degradation in the three alloys — SAC105, SAC305 and Innolot. Full field strain measurements have been accomplished with the use of high speed imaging in conjunction with Digital Image Correlation (DIC). Ramberg-Osgood non-linear model parameters have been determined to curve-fit through the experimental data. The parameters have been implemented in Abaqus FE model to obtain full-field stresses which correlates with contours obtained experimentally by DIC.


Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Electronics products may often be exposed to high temperature during storage, operation and handling in addition to high strain rate transient dynamic loads during drop-impact. Electronics subjected to drop-impact, shock and vibration may experience strain rates of 1–100 per sec. There are no material properties available in published literature at high strain rate at elevated temperature. High temperature and vibrations can contribute to the failures of electronic system. The reliability of electronic products can be improved through a thorough understanding of the weakest link in the electronic systems which is the solder interconnects. The solder interconnects accrue damage much faster when subjected to Shock and vibration at elevated temperatures. There is lack of fundamental understanding of reliability of electronic systems subjected to thermal loads. Previous studies have showed the effect of high strain rates and thermal aging on the mechanical properties of leadfree alloys including elastic modulus and the ultimate tensile strength. Extended period of thermal aging has been shown to affect the mechanical properties of lead free alloys including elastic modulus and the ultimate tensile strength at low strain rates representative of thermal fatigue [Lee 2012, Motalab 2012]. Previously, the microstructure, mechanical response and failure behavior of leadfree solder alloys when subjected to elevated isothermal aging and/or thermal cycling [Darveaux 2005, Ding 2007, Pang 2004] have been measured. Pang [1998] has showed that young’s modulus and yield stress of Sn-Pb are highly depending on strain rate and temperature. The ANAND viscoplastic constitutive model has been widely used to describe the inelastic deformation behavior of solders in electronic components. Previously, Mechanical properties of lead-free alloys, at different high strain rates (10, 35, 50, 75 /sec) and elevated temperature (25 C-125 C) for pristine samples have been studied [Lall 2012 and Lall 2014]. Previous researchers [Suh 2007 and Jenq 2009] have determined the mechanical properties of SAC105 at very high strain rate (Above 1000 per sec) using compression testing. But there is no data available in published literature at high strain rate and at elevated temperature for aged conditions. In this study, mechanical properties of lead free SAC105 has been determined for high strain rate at elevated temperature for aged samples. Effect of aging on mechanical properties of SAC105 alloy a high strain rates has been studied. Stress-Strain curves have been plotted over a wide range of strain rates and temperatures for aged specimen. Experimental data for the aged specimen has been fit to the ANAND’s viscoplastic model. SAC105 leadfree alloys have been tested at strain rates of 10, 35, 50 and 75 per sec at various operating temperatures of 50°C, 75°C, 100°C and 125°C. The test samples were exposed to isothermal aging conditions at 50°C for different aging time (30, 60, and 120 Days) before testing. Full-field strain in the specimen have been measured using high speed imaging at frame rates up to 75,000 fps in combination with digital image correlation. The cross-head velocity has been measured prior-to, during, and after deformation to ensure the constancy of cross-head velocity.


Sign in / Sign up

Export Citation Format

Share Document