Intermetallic Growth and Void Formation Mechanism in Flip Chip Copper Pillar Interconnects: Role of the Underfill Material

Author(s):  
Miao Wang ◽  
Trent Uehling ◽  
Amar Mavinkurve ◽  
Paige Uehling ◽  
Sudan Ahmed ◽  
...  
2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Sangil Lee ◽  
M. J. Yim ◽  
Daniel Baldwin

This paper investigates the void formation mechanism induced by chemical interaction between eutectic solder (Sn63/Pb37) wetting and no-flow underfill material curing during flip chip in package assembly. During the process, low weight molecular components, such as fluxing agents and water molecules, could be induced by the chemical interaction between solder wetting and underfill curing when these components are heated to melt and cure, respectively. The low weight molecular components become volatile with exposure to temperatures above their boiling points; this was found to be the main source of the extensively formed underfill voiding. This mechanism of chemically and thermally induced voids was explained using void formation study, differential scanning calorimetry thermogram comparison, and gas chromatography and mass spectroscopy chemical composition identification on the suggested chemical reaction formula. This finding can enhance understanding of the mechanism that drives no-flow underfill voiding and can develop a void-free flip chip assembly process using no-flow underfill material for cost effective and high performance electronics packaging applications. Furthermore, this study provides the design guideline to develop an advanced no-flow underfill having high performance at high temperature range for the lead-free application.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Chong Ng ◽  
Mohd Hafiz Zawawi ◽  
Mohamad Aizat Abas

Purpose The purpose of the study is to investigate the spatial aspects of underfill flow during the flip-chip encapsulation process, for instance, meniscus evolution and contact line jump (CLJ). Furthermore, a spatial-based void formation mechanism during the underfill flow was formulated. Design/methodology/approach The meniscus evolution of underfill fluid subtended between the bump array and the CLJ phenomenon were visualized numerically using the micro-mesh unit cell approach. Additionally, the meniscus evolution and CLJ phenomenon were modelled analytically based on the formulation of capillary physics. Meanwhile, the mechanism of void formation was explained numerically and analytically. Findings Both the proposed analytical and current numerical findings achieved great consensus and were well-validated experimentally. The variation effects of bump pitch on the spatial aspects were analyzed and found that the meniscus arc radius and filling distance increase with the pitch, while the subtended angle of meniscus arc is invariant with the pitch size. For larger pitch, the jump occurs further away from the bump entrance and takes longer time to attain the equilibrium meniscus. This inferred that the concavity of meniscus arc was influenced by the bump pitch. On the voiding mechanism, air void was formed from the air entrapment because of the fluid-bump interaction. Smaller voids tend to merge into a bigger void through necking and, subsequently, propagate along the underfill flow. Practical implications The microscopic spatial analysis of underfill flow would explain fundamentally how the bump design will affect the macroscopic filling time. This not only provides alternative visualization tool to analyze flow pattern in the industry but also enables the development of accurate analytical filling time model. Moreover, the void formation mechanism gave substantial insights to understand the root causes of void defects and allow possible solutions to be formulated to tackle this issue. Additionally, the microfluidics sector could also benefit from these spatial analysis insights. Originality/value Spatial analysis on underfill flow is scarcely conducted, as the past research studies mainly emphasized on the temporal aspects. Additionally, this work presented a new mechanism on the void formation based on the fluid-bump interaction, in which the formation and propagation of micro-voids were numerically visualized for the first time. The findings from current work provided fundamental information on the flow interaction between underfill fluid and solder bump to the package designers for optimization work and process enhancement.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000798-000805 ◽  
Author(s):  
Sangil Lee ◽  
Daniel F. Baldwin

The advanced assembly process for a flip chip in package (FCIP) using no-flow underfill material presents challenges with high I/O density (over 3000 I/O) and fine-pitch (down to 150 μm) interconnect applications because it has narrowed the feasible assembly process window for achieving robust interconnect yield. In spite of such challenges, a high yield, nearly void-free assembly process has been achieved in the past research using commercial no-flow underfill material with a high I/O, fine pitch FCIP. The initial void area (approximately 7% ) could cause early failures such solders fatigue cracking or solder bridging in thermal reliability. Therefore, this study reviewed a classical bubble nucleation theory to predict the conditions of underfill void nucleation in the no flow assembly process. Based on the models prediction, systematic experiments were designed to eliminate underfill voiding using parametric studies. First, a void formation study investigated the effect of reflow parameter on underfill voiding and found process conditions of void-free assembly with robust interconnections. Second, a void formation characterization validated the determined reflow conditions to achieve a high yield and void-free assembly process, and the stability of assembly process using a large scale of assemblies respectively. This paper presents systematic studies into void formation study and void formation characterization through the use of structured experimentation which was designed to achieve a high yield, void-free assembly process leveraging a void formation model based on classical bubble nucleation theory. Indeed, the theoretical models were in good agreement with experimental results.


Author(s):  
Satoru Katsurayama ◽  
Hironori Tohmyoh ◽  
Masumi Saka

Generally, underfill material is adopted for encapsulation of flip chip package. And, the role of the underfill materials has become important day by day due to variant requirements for higher reliability of flip chip package. Also lower warpage gives higher mount-ability of the flip chip package and the small changes in the warpage of the package during the thermal cycle mitigate the stress working at the bump/substrate interface and bump/chip interface. Therefore, controlling the warpage of the flip chip package becomes very important problem for enhancing the performance of the package, i.e., the higher mount-ability and longer interconnect life. In this study, the effect of physical properties of underfill materials and substrates on the warpage behavior and the interconnect reliability of the flip chip package is reported. It was found from the experiments that the selection of an underfill and a substrate gave the highest interconnect reliability for the bump bonds. In addition to control the warpage behavior of the package during assembly, by selecting the suitable underfill material and substrate, the flip chip package with lower warpage and higher interconnect reliability can be realized.


1989 ◽  
Vol 36 (6) ◽  
pp. 1050-1055 ◽  
Author(s):  
K. Hinode ◽  
I. Asano ◽  
Y. Homma

2013 ◽  
Vol 668 ◽  
pp. 865-869
Author(s):  
Wan Wu Ding ◽  
Wen Jun Zhao ◽  
Tian Dong Xia

The influence of different solidified velocities on the structure of pure aluminum during the process of refinement by Al-5Ti-0.6C master alloy was studied and the impact mechanism was discussed. The results show that at the same solidified velocity, with the increase of the amount of Al-5Ti-0.6C master alloy, in the solidified structure of pure aluminum, columnar crystals will gradually decrease, while equiaxed crystals will gradually increase. But in the case when the level of addition is the same, the faster the solidified velocity, the greater the number of equiaxed crystals will be in the ingot microstructure. The formation of equiaxed crystals is the result of the dual role of dissociation of crystal particles and heterogeneous nucleation of “TiC particle---Ti transition zone”.


2013 ◽  
Vol 48 (14) ◽  
pp. 4914-4924 ◽  
Author(s):  
P. Díaz-Chao ◽  
J. R. Ares ◽  
I. J. Ferrer ◽  
C. Sánchez

Author(s):  
Ieuan Seymour ◽  
Ainara Aguadero

All-solid-state batteries containing a solid electrolyte and a lithium (Li) or sodium (Na) metal anode are a promising solution to simultaneously increase the energy density and safety of rechargeable batteries....


2006 ◽  
Vol 89 (3) ◽  
pp. 032103 ◽  
Author(s):  
Y. W. Chang ◽  
S. W. Liang ◽  
Chih Chen

Sign in / Sign up

Export Citation Format

Share Document