Irradiance Variation Effect on the Electrical Performance of a Grid Connected PV System

Author(s):  
Amna Babikir Taha ◽  
Sharief Fadul Babiker
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2727 ◽  
Author(s):  
Sofiane Kichou ◽  
Nikolaos Skandalos ◽  
Petr Wolf

This paper reports on the electrical performance of two bloc-of-flats buildings located in Prague, Czech Republic. Measured data of electrical consumption were used to investigate the effect of photovoltaic (PV) and battery energy storage system (BESS) systems on the overlap between generation and demand. Different PV array configurations and battery storage capacities were considered. Detailed solar analysis was carried out to analyze the solar potential of the building and to assess the PV electricity production. The evaluation of the building performance was done through MATLAB simulations based on one-year monitored data. The simulation results were used for the calculation of the load matching indices: namely, the self-consumption and self-sufficiency. It was found that optimized array tilt and orientation angles can effectively contribute to a better adjustment between electricity demand and solar PV generation. The addition of a façade PV system increases significantly the PV generation and thus the load matching during winter months. Mismatch is further reduced by using the energy flexibility provided by the BESS. Depending on the PV size and BESS capacity, the self-consumption and the self-sufficiency of the building could increase from 55% to 100% and from 24% up to 68%, respectively.


Energies ◽  
2015 ◽  
Vol 8 (4) ◽  
pp. 2803-2827 ◽  
Author(s):  
Haitham Bahaidarah ◽  
Bilal Tanweer ◽  
Palanichamy Gandhidasan ◽  
Shafiqur Rehman

Author(s):  
Vivek R. Pawar ◽  
Mahbube K. Siddiki ◽  
Sarvenaz Sobhansarbandi

Abstract Solar photovoltaic (PV) system harness the energy from the sunlight and convert into clean electricity to power homes and businesses. During an operation the solar panels get hot, the electrons inside the solar cells pick up that extra heat energy which puts them in a more excited state and when they are already excited, they have less room to absorb the energy from sunlight. As a result, electrical performance of a PV system reduces with increase in solar cell temperature. Efficiency of PV panels can be retained by establishing a hybrid PV-Thermal (PV-T) system. In this study, container filled with phase change material (PCM) embedded in porous metal is attached to back surface of the PV cell. As well as, to extract the excess heat from the PV cell, water is used as a heat transfer fluid (HTF) with constant mass flow rate of 30 kg/hr. During the simulation melting rate of PCM, amount of latent heat energy stored, thermal, electrical and overall efficiencies of the PV panel is studied and compared with the conventional PV-T system. The results show the enhanced melting fraction of PCM by 6% and 8% for the PV-T/PCM/Cu and PV-T/PCM/Al system, respectively compared with PV-T/PCM system. Moreover, in comparison with the conventional PV-T system, the overall efficiency of the PV-T/PCM/Cu and PV-T/PCM/Al is increased by 10.62% and 8.80%, respectively.


2020 ◽  
Vol 16 (4) ◽  
pp. 568-577
Author(s):  
Muhammad Naveed Shaikh ◽  
Qayyum Zafar ◽  
Antonis Papadakis

Background: The accurate energy yield prediction of a PV system under various environmental conditions is important for designing a high-performance PV system. Objective: The robust and cost-effective digital simulation studies on PV systems have the advantage in comparison to studies based on measurements because they provide the opportunity for sensitivity analysis on various design parameters of the PV system. Methods: Herein, we present the development and implementation of a generalized photovoltaic computational model using Matlab/Simulink software package. The model is based on the equivalent diode circuit approach. It is designed to simulate two ubiquitous and high performing 2nd generation photovoltaic (PV) modules constructed with Cadmium Telluride (CdTe) and Copper Indium Gallium di-Selenide (CIGS) photoactive thin films, respectively. The values of key input parameters to the simulator, i.e., parallel resistor (Rp) and series resistor (Rs) have been computed by an efficient Newton-Raphson iteration method. Results: The output current-voltage (I-V) and power-voltage (P-V) characteristic curves of the aforementioned PV modules have been simulated by taking two input variables (ambient irradiance and temperature) into consideration. The electrical performance of both PV modules under various environmental conditions have been mathematically investigated by the solution of classical non-linear equations. Conclusion: The developed PV model has been validated with the experimental results obtained from standard PV module datasheets provided by manufacturers. The relative error between the simulated and experimental values of various photovoltaic parameters for CdTe and CIGS PV modules at Standard Test Conditions (STC) has been observed to be below 3%.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
J. Charles Franklin ◽  
M. Chandrasekar ◽  
D. Ansalam Mattius

Abstract The thermal and electrical performance of the solar photovoltaic (PV) panel of a solar photovoltaic thermal (PVT) air system is determined experimentally in the present work. For this purpose, a data acquisition system was developed indigenously using ATMEL MEGA 2560 and ATMEL 328 microcontrollers. The parameters measured were PV panel surface temperature, inlet and outlet air temperatures, PV current, and voltage. The parameters were also compared with those of a reference PV system to demonstrate the effect of cooling of PV panel on its electrical power output. The experiments were performed in the locality of Tiruchirappalli, Tamilnadu, India (11 deg N latitude, 79 deg E longitude) and the working of the PV data acquisition was tested for a period of 3 months from February to April 2017. The results indicate acceptable working of the indigenously developed PV/PVT data acquisition system.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Honglu Zhu ◽  
Weiwei Lian ◽  
Lingxing Lu ◽  
Peter Kamunyu ◽  
Cao Yu ◽  
...  

The operating temperature of silicon-based solar modules has a significant effect on the electrical performance and power generation efficiency of photovoltaic (PV) modules. It is an important parameter for PV system modeling, performance evaluation, and maximum power point tracking. The analysis shows that the results of physics-based methods always change with seasons and weather conditions. It is difficult to measure all the needed variables to build the physics-based model for the calculation of operating temperature. Due to the above problem, the paper proposes an online method to calculate operating temperature, which adopts the back propagation artificial neural network (BP-ANN) algorithm. The comparative analysis is carried out using data from the empirical test platform, and the results show that both the BP-ANN and the support vector machine (SVM) method can reach good accuracy when the dataset length was over six months. The SVM method is not suitable for the temperature modeling because its computing time is too long. To improve the performance, wind speed should be taken as one of the models’ input if possible. The proposed method is effective to calculate the operating temperature of silicon-based solar modules online, which is a low-cost soft-sensing solution.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 253
Author(s):  
G Sreenivasa Reddy ◽  
T Bramhananda Reddy ◽  
M Vijaya Kumar

A solar photovoltaic panel or a solar PV module is a device, which is to be considered universality the basic constituent of a solar photovoltaic system and is a combination of series and parallel assembly of solar cells. The electrical performance of this solar photovoltaic module be contingent on different environmental situations like PV cells/module solar spectral (air mass), ambient temperature, solar irradiance, angle-of-incidence.With these dependent conditions, there will be a petite chance to operate at its maximum power point (MPP) Hence, a Perturb and Observe (P&O) MPP algorithm is employed which draws considerable power with the desired time response. In present work, the interfacing of Solar PV system with the utility grid system which is having 15kW based on the Voltage Oriented Control (VOC). The temperature of the individual photovoltaic cell and solar irradiation are to be considered as inputs for the simulation process, whereas the duty cycle of the DC-DC boost converter is an output of the P&O controller. Performance of this grid-connected PV system with VOC method is analyzed with the simulation results and %THD values of the voltage and current at coupling point is verified. The results show the superiority of VOC method and its high dynamic behavior under variable irradiation conditions.  


Author(s):  
P. A. Sanchez-Perez ◽  
D. Martinez Escobar ◽  
E. O. Angel Ruiz ◽  
R. Santos Magdaleno ◽  
Jose Ortega Cruz ◽  
...  

Author(s):  
L. M. Gignac ◽  
K. P. Rodbell

As advanced semiconductor device features shrink, grain boundaries and interfaces become increasingly more important to the properties of thin metal films. With film thicknesses decreasing to the range of 10 nm and the corresponding features also decreasing to sub-micrometer sizes, interface and grain boundary properties become dominant. In this regime the details of the surfaces and grain boundaries dictate the interactions between film layers and the subsequent electrical properties. Therefore it is necessary to accurately characterize these materials on the proper length scale in order to first understand and then to improve the device effectiveness. In this talk we will examine the importance of microstructural characterization of thin metal films used in semiconductor devices and show how microstructure can influence the electrical performance. Specifically, we will review Co and Ti silicides for silicon contact and gate conductor applications, Ti/TiN liner films used for adhesion and diffusion barriers in chemical vapor deposited (CVD) tungsten vertical wiring (vias) and Ti/AlCu/Ti-TiN films used as planar interconnect metal lines.


2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


Sign in / Sign up

Export Citation Format

Share Document