Comparative analysis of the behavior of EKF algorithm integrated classical PI controller and cascade PI-fuzzy controller

Author(s):  
M. Mahesh ◽  
H. R. Sukhesh
2011 ◽  
Vol 86 ◽  
pp. 762-766
Author(s):  
Jian Jun Hu ◽  
Peng Ge ◽  
Zheng Bin He ◽  
Da Tong Qin

The dynamic models of whole rear-wheel drive vehicle, limited-slip differential, hydraulic control system and electronic throttle were established. Simulations of acceleration course on split-µ road, checkerboard-µ road, low-µ road and step-µ road were carried out combining electronic throttle PI controller and limited-slip differential fuzzy controller. The results show that the Anti-slip Regulation quickly works according to the road adhesion coefficient, effectively inhibits the slip of driving wheels on low adhesion coefficient road, the acceleration performance driving on bad roads was improved obviously, and show a good adaptability.


Author(s):  
R.S. Ravi Sankar ◽  
S.V. Jayaram Kumar ◽  
G. Mohan Rao

Now a day‟s, Photo Voltaic (PV) power generation rapidly increasing. This power generation highly depending on the temperature and irradiation. When this power interface with grid through the voltage source inverter with PI controller. Its gains should be updated due to the parametric changes for the better performance. In This Work Fuzzy Controller updates the gains of the proportional integral (PI)s Controller under variable parametric conditions. the gaines of the PI Controller are updated based on the error current and change in error current through the fuzzy controller. The error current in direct and quadrature frame are the Inputs to the PI controller. The PI Controller generates the reference voltage to the pulse width modulation technique. Here reference voltage is compared with the carrier signal to generate the pulses to the 3-Ph Inverter connected to the grid. This controller has given well dynamic response with less steady state error and also given The less THD of the grid current compared to the PI and Fuzzy controller.It Is implemented and verified in MATLAB Simulink.


Author(s):  
D. Ganesh ◽  
S.MD. Saleem Naveed ◽  
M. Kalyan Chakravarthi

Aquaculture is major occupation for the humans living at coastal areas. The fresh water cultivation of the certain species is prominent in tropical and sub-tropical climates. Here the proposed work shows the relation-ship between the growth of the certain species of marine habitats and the factors affecting their growth with respect to the medium of their living. Advancement of embedded systems in aquaculture leads to new innovations of monitoring and controlling the various parameters. Here the embedded system based application is used, through which the monitoring and controlling of the light is done with the help of LabVIEW based PI controller as well as Fuzzy controller for the effective and healthy growth of the marine habitat. The Designed controllers are energy efficient based controller for controlling the Light Source (LS) via appropriate lighting control levels. The controlling and managing of the system is based on the present light intensity with the help of virtual controller. The proposed work involves the designing and implementation of PI controller and the fuzzy controller for the real time setup to monitor and control the process for optimal and feasible solution.


Author(s):  
Anurag Singh Tomer ◽  
Saty Prakash Dubey

<p>This Paper gives a complete modeling and simulation of a two inverter fed six phase permanent magnet synchronous motor drive system, Then response based comparative analysis is done on starting torque ,settling time, Steady state current at various speed levels and torque levels by changing  proportional- integral (PI) controller to  Fuzzy logic controller. The PI controller has some disadvantages like, more settling time, sluggish response due to sudden change in load torque etc. So an intelligent controller, based on fuzzy logic is introduced which replaces the PI-controller and its drawbacks. The performance of both the controller has been investigated and studied by comparing the different plots obtained by setting various speed level both incremented and decremented speed  , at different load conditions like No-load, fix load and dynamic load through Matlab/Simulink environment. Finally it is concluded from the result that fuzzy logic based controller is robust, reliable gives quick response with high starting torque and more effective than the conventional PI controller. It is also observed that both the proposed model can also run above rated speed significantally.</p>


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3778
Author(s):  
Weixuan Zhang ◽  
Yu Fang ◽  
Rong Ye ◽  
Zhengqun Wang

Aiming at the application of a reversible three-phase pulse width modulation (PWM) converter with a wide range of AC side voltage and DC side voltage, a double fuzzy proportional integral (PI) controller for voltage outer loop was proposed. The structures of the proposed controller were motivated by the problems that either the traditional PI controller or single fuzzy PI controller cannot achieve high performance in a wide range of AC and DC voltage conditions. The presented double fuzzy controller studied in this paper is a sub fuzzy controller in addition to the traditional fuzzy PI controller; in particular, the sub fuzzy controller can get the auxiliary correction of PI control parameters according to the AC side voltage and the DC side given voltage variation of PWM converter after the reasoning of the sub fuzzy controller, while the traditional fuzzy PI controller outputs the correction of PI control parameters according to the DC voltage error and its error change rate. In this paper, the traditional fuzzy PI controller can be called the main fuzzy controller, and the adaptive adjustment of PI control parameters of the voltage outer loop is the sum of the PI parameter correction output by the main fuzzy controller and the auxiliary PI parameter correction output by the sub fuzzy controller. Finally, the experimental results show that the reversible three-phase PWM converter can achieve excellent dynamic and static performance in a wide range of AC voltage and DC voltage applications by using the proposed double fuzzy PI controller.


2019 ◽  
Vol 8 (4) ◽  
pp. 12346-12354

Large capacity wind farm are used to fulfil the demand of power now days. Stability of these wind farms is the main concern when integrating with the large power system. FACTS devices are employed with the system to advance the dynamic time responses of the system. In this paper a comparative analysis of STATCOM and SVC has been done. At the place of conventional controllers like P, PI, PID fuzzy logic control (FLC) has been used in the FACTS devices used. These FACTS devices are used to improve the power quality of the overall system. To inspect the system performance and analyze the behavior of the system a three phase to ground fault has been taken into account at two different locations, the software used for modelling and simulation is MATLAB/Simulink. Results demonstrate damping and oscillations of Fuzzy controlled STATCOM and SVC based system.The comparative analysis shows that the system with FLC based STATCOM has better performance than the FLC based SVC and fast fault clearance.


10.14311/898 ◽  
2006 ◽  
Vol 46 (6) ◽  
Author(s):  
Hussein F. Soliman ◽  
Abdel-Fattah Attia ◽  
S. M. Mokhymar ◽  
M. A. L. Badr

This paper presents the application of a Fuzzy Logic Controller (FLC) to regulate the voltage of a Self Excited Induction Generator (SEIG) driven by Wind Energy Conversion Schemes (WECS). The proposed FLC is used to tune the integral gain (KI) of a Proportional plus Integral (PI) controller. Two types of controls, for the generator and for the wind turbine, using a FLC algorithm, are introduced in this paper. The voltage control is performed to adapt the terminal voltage via self excitation. The frequency control is conducted to adjust the stator frequency through tuning the pitch angle of the WECS blades. Both controllers utilize the Fuzzy technique to enhance the overall dynamic performance.  The simulation result depicts a better dynamic response for the system under study during the starting period, and the load variation. The percentage overshoot, rising time and oscillation are better with the fuzzy controller than with the PI controller type. 


Sign in / Sign up

Export Citation Format

Share Document