Design of test-control system based on MCU for variable speed hydraulic system

Author(s):  
Tianhao Peng ◽  
Xiaosong Hao ◽  
Jiadong Liu ◽  
Meisheng Yang
2009 ◽  
Vol 628-629 ◽  
pp. 257-262 ◽  
Author(s):  
Tong Xing

The cutter head drive hydraulic system of φ1.8m simulate shield machine is introduced in this article, which has the variable speed pump control technique and the closed loop control method. The AMESim simulation model of the hydraulic system is built up, and the efficiency of the hydraulic system, speed control performance by open loop and closed loop control are analyzed. The result of the simulation shows that the variable speed pump control system has higher efficiency than the variable displacement pump control system about 4%-26% in the same condition when the cutter head speed is at the range of 0.5-4r/min, and the hydraulic system has good dynamic characteristics in closed-loop PID control.


Author(s):  
Fahmi Yunistyawan ◽  
Yunistyawan J Berchmans ◽  
Gembong Baskoro

This study implements the auto start control system on an electric motor 3 phase C4Feeding pump when the discharge pressure is low-low (4.3 kg /cm²). The C4 feeding pumpmotor was initially manually operated from the local control station, this was very ineffectiveand inefficient because it still relied on the field operator to operate the pump motor and whenthe plant was in normal operating it is very risk if the field operator late to operate motor then itwill impact to quality of the product, and if the delay time to operate motor is too long then planthave to shut down, therefore improvement is needed in the C4 feeding pump motor controlsystem. In this paper, various types of 3-phase motor control are explained which allow it to beapplied to the C4 feeding pump motor that are on-off, inverter, and variable speed drive andefficient selection of the three systems control of the motor. Software and hardware used in thisthesis work are DCS CENTUM VP Yokogawa.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Tianqian Xia ◽  
Xianghua Huang

Abstract A method of variable speed control system for turboprop engine is presented in this paper. Firstly, the steady operation state of turboprop engine is analyzed, and the operating line is figured out in the steady state characteristic diagram, which is the design basis of Engine Thrust Management System (ETMS). Secondly, the reference model sliding mode multivariable control is used to design the control law to follow the speed instructions given by ETMS. Finally, the optimization of the minimum fuel consumption operating curve is realized, and the control system designed is applied to a numerical model of a turboprop engine. The simulation results show that compared with the constant speed control system, the variable speed control system can reduce the specific fuel consumption by 2.37 % on average and 3.1 % in steady state conditions. Furthermore, the method can enable the pilot to manipulate the turboprop aircraft by using only one throttle lever, which can greatly reduce the pilot operation burden.


2018 ◽  
Vol 8 (7) ◽  
pp. 1201 ◽  
Author(s):  
Haigang Ding ◽  
Jiyun Zhao ◽  
Gang Cheng ◽  
Steve Wright ◽  
Yufeng Yao

A new leaking valve-pump parallel control (LVPC) oil hydraulic system is proposed to improve the performance of dynamic response of present variable speed pump control (VSPC) system, which is an oil hydraulic control system with saving energy. In the LVPC, a control valve is operating at leaking status, together with a variable speed pump, to regulate the system flow of hydraulic oil simultaneously. Therefore, the degree of valve control and pump control can be adjusted by regulating the valve-pump weight ratio. The LVPC system design, mathematical model development, system parameter and control performance analysis are carried out systematically followed by an experimental for validation process. Results have shown that after introducing the valve control, the total leakage coefficient increases significantly over a wide range with the operating point and this further increases damping ratios and reduces the velocity stiffness. As the valve-pump weight ratio determines the flow distribution between the valve and the pump and the weight factors of the valve and/or the pump controls determines the response speed of the LVPC system, thus if the weight factors are constrained properly, the LVPC system will eventually have a large synthetic open-loop gain and it will respond faster than the VSPC system. The LVPC will enrich the control schemes of oil hydraulic system and has potential value in application requiring of fast response.


2011 ◽  
Vol 65 ◽  
pp. 336-340
Author(s):  
Cheng Qun Li ◽  
Chun Bin Yang ◽  
Jian Gong Li

On the basis of the research on the domestic and foreign binding machine, this article describes a new model of binding machine. Its compact structure is easy to operate and maintain. solidworks software is applied for modeling. Based on the plc-300 cpu module control system, not only ensures the speed and reliability bunch, but also gives good man-machine interactions. Hydraulic system saves energy effectively. Hydraulic components are distributed in the surface of its structure and easy to check repair.


2014 ◽  
Vol 26 ◽  
pp. 51-71 ◽  
Author(s):  
Ergin Kilic ◽  
Melik Dolen ◽  
Hakan Caliskan ◽  
Ahmet Bugra Koku ◽  
Tuna Balkan

2021 ◽  
Author(s):  
Zhenhan. Luo

In this thesis, a novel AC-DC rectifier is adopted to convert the variable AC voltages from wind generator to a constant dc-link voltage. A DC-AC inverter is used to transfer the energy to fixed ac grid as well as maintain dc-link voltage constant. The rectifier is connected to the generator, which has two sets of three-phase windings. Electrical exited or permanent magnetic synchronous generators are suitable for this rectifier. The AC-DC rectifier features low cost, low power losses and simple control structure. The major content of this thesis consists of four parts. The first part investigates the operation of the AC-DC rectifier. The analysis illustrates the current paths in the rectifier and the remarkable voltage-boosting capability. A simulation model of the converter is built and verified. The second part models the synchronous generator with two sets of windings. The model is developed in the d-q synchronous reference frame. The simulation results from the model are verified by the experimental results.Then the third part is the design of the control system, which involves the generator, the AC-DC rectifier and constant dc-link voltage source. The control system composites of the inner current loop and the outer speed loop. The control system achieves the variable-speed operation of the generator and the regulation of the dc-link current. Finally, a prototype of wind turbine system is established in the lab to verify the analysis of rectifier, synchronous generator and control system design. The steady-state and transient responses of the wind system are compared. Simulation and experiment verify the analysis in this thesis.


2014 ◽  
Vol 1044-1045 ◽  
pp. 930-932
Author(s):  
Yu Ping Wei

The operating system of loader working device is composed of the boom and bucket. It is operated mainly through multi-way valve axis manipulation, this kind of way is force-large, labor-intensive, but is low efficient. So it is necessary to optimize the oil source valve. Using the hydraulic pilot to control loader multi-way valve to optimize in the loader is safe, comfortable, furnished spirit and can achieve variable speed. Working hydraulic system uses a small flow pilot circuit control. The main oil is controlled by high pressure and large flow, and then the operating force of the working device is reduced greatly.


Sign in / Sign up

Export Citation Format

Share Document