A set-up to apply very-fast transients in power transformers

Author(s):  
Helvio J. A. Martins ◽  
Leonardo T. B. Santos
2017 ◽  
Vol 13 (S337) ◽  
pp. 9-12
Author(s):  
C. M. Tan ◽  

AbstractThe LOFAR Tied Array All-Sky Survey (LOTAAS) is an ongoing all northern sky survey for pulsars and transients. It is one of the first large scale pulsar surveys conducted at an observing frequency below 200 MHz. The unique set-up of the survey is the simultaneous formation of 222 beams for each survey pointing by coherently adding signals from the central 6 LOFAR stations. This represents the first SKA-like pulsar survey. As of 12 September 2017, the survey has completed 1456 pointings, more than two-thirds of the total. The survey has discovered 61 new pulsars via Fourier-based periodicity searches and a further 5 via single pulse searches. I present the survey approach and distinctive features including a discussion of an improved machine learning classifier used to identify the best candidates produced by the pipeline for further investigation. I present a summary of the discoveries so far including the first binary pulsar and the pulsar with the longest spin period of 23.5 s.


2021 ◽  
Vol 11 (24) ◽  
pp. 12010
Author(s):  
Bradut-Eugen Ghidersa ◽  
Bruno Gonfiotti ◽  
André Kunze ◽  
Valentino Di Marcello ◽  
Mihaela Ionescu-Bujor ◽  
...  

The experimental investigation of a prototypical set-up simulating a loss of flow accident in a helium-cooled breeding blanket first wall mock-up under typical heat load conditions is presented. The experimental campaign reproduces the expected DEMO thermal-hydraulics conditions during normal and off-normal situations and aims at providing some insight into the fast transients associated with the loss of flow in the blanket first wall. The experimental set-up and the definition of the experimental matrix are discussed, including pre-test analysis performed in support of these activities. The major experimental results are discussed, and a procedure of using the acquired data for validating and calibrating the RELAP-3D model of the mock-up is introduced. All these activities contributed to the creation of a relevant theoretical and practical experience that can be used in further studies concerning incidental transients in real-plant scenarios in the framework of DEMO plant fusion safety activities.


2011 ◽  
Vol 138-139 ◽  
pp. 764-769
Author(s):  
Jian Jun Liu ◽  
Jian Min Wang ◽  
Chong You Jing ◽  
Chang Zai Fan ◽  
Yuan Zhai

The Simplified model of both calculating leakage magnetic field and mechanical force of windings at short circuit condition for a 120MVA/220kV power transformer is set up. The leakage magnetic field ‚ short-circuit force and stress in transformer windings are analyzed and their distributing characteristics are acquired respectively by using FEM. The calculation method and results are validated by withstanding short circuit strength test of the product. A number of useful suggestions are given for design of power transformers.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
O.L. Krivanek ◽  
J. TaftØ

It is well known that a standing electron wavefield can be set up in a crystal such that its intensity peaks at the atomic sites or between the sites or in the case of more complex crystal, at one or another type of a site. The effect is usually referred to as channelling but this term is not entirely appropriate; by analogy with the more established particle channelling, electrons would have to be described as channelling either through the channels or through the channel walls, depending on the diffraction conditions.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
T.S. Savage ◽  
R. Ai ◽  
D. Dunn ◽  
L.D. Marks

The use of lasers for surface annealing, heating and/or damage has become a routine practice in the study of materials. Lasers have been closely looked at as an annealing technique for silicon and other semiconductors. They allow for local heating from a beam which can be focused and tuned to different wavelengths for specific tasks. Pulsed dye lasers allow for short, quick bursts which can allow the sample to be rapidly heated and quenched. This short, rapid heating period may be important for cases where diffusion of impurities or dopants may not be desirable.At Northwestern University, a Candela SLL - 250 pulsed dye laser, with a maximum power of 1 Joule/pulse over 350 - 400 nanoseconds, has been set up in conjunction with a Hitachi UHV-H9000 transmission electron microscope. The laser beam is introduced into the surface science chamber through a series of mirrors, a focusing lens and a six inch quartz window.


Sign in / Sign up

Export Citation Format

Share Document