Evaluation of ultra-low specific contact resistance extraction by cross-bridge Kelvin resistor structure and transmission line method structure

Author(s):  
Bing-Yue Tsui ◽  
Hsuan-Tzu Tseng
1999 ◽  
Vol 4 (S1) ◽  
pp. 703-708 ◽  
Author(s):  
R.W. Chuang ◽  
A.Q. Zou ◽  
H.P. Lee ◽  
Z.J. Dong ◽  
F.F. Xiong ◽  
...  

We report both the device fabrication and characterization of InGaN/GaN single quantum well LEDs grown on sapphire substrates using multi-wafer MOVPE reactor. To improve current spreading of the LEDs, a self-aligned process is developed to define LED mesa that is coated with a thin, semi-transparent Ni/Au (40 Å/40 Å) layer. A detailed study on the ohmic contact resistance of Ni/Cr/Au on p-GaN versus annealing temperatures is carried out on transmission line test structures. It was found that the annealing temperatures between 300 to 500 °C yield the lowest specific contact resistance rc ( 0.016 Ω-cm2 at a current density of 66.7 mA/cm). Based on the extracted rc from the transmission line measurement, we estimate that the contact resistance of the p-type GaN accounts for ∼ 88% of the total series resistance of the LED.


2000 ◽  
Vol 640 ◽  
Author(s):  
Xaiobin Wang ◽  
Stanislav Soloviev ◽  
Ying Gao ◽  
G. Straty ◽  
Tangali Sudarshan ◽  
...  

ABSTRACTOhmic contacts to p-type SiC were fabricated by depositing Al/Ni and Al/Ti followed by high temperature annealing. A p-type layer was fabricated by Al or B diffusion from vapor phase into both p-type and n-type substrates. The thickness of the diffused layer was about 0.1–0.2 μm with surface carrier concentration of about 1.0×1019cm−3. Metal contacts to a p-type substrate with a background doping concentration of 1.2×1018cm−3, without a diffusion layer, were also formed. The values of specific contact resistance obtained by Circular Transmission Line Method (CTLM) and Transfer Length Method (TLM) for the n-type substrate, and by Cox & Strack method for p-type substrate, respectively, varied from 1.3×10−4Ωcm2 to 8.8×10−3 Ωcm2. The results indicate that the specific contact resistance could be significantly reduced by creating a highly doped diffused surface layer.


2006 ◽  
Vol 911 ◽  
Author(s):  
Kirk Hofeling ◽  
Loren Rieth ◽  
Florian Solzbacher

AbstractTiW(40 nm)/TiWN(80 nm)/Pt(500nm) was investigated as a new high-temperature compatible contact stack to 3C-SiC for harsh environment applications. Performance of TiW/TiWN/Pt contacts deposited on unintentionally doped (8.85×1018 cm-3) 3C-SiC grown by LPCVD to a thickness of ~1μm on (100) Si are reported. The linear transmission line method was used to determine specific contact resistance (ρc) at room temperature and for long-term tests at 300 °C. As deposited contacts were Ohmic with a ρc range of 1×10-4 to 1×10-3 cm2. These contacts were annealed for five minutes in forming gas (8% H2 92% Ar), at temperatures from 450 to 950 °C and all retained Ohmic character. Annealing samples at 450, 550 and 950 °C decreased ρc while anneling between 650 and 850 °C generally increased ρc.Auger Electron Spectroscopy (AES) analysis was performed on a sample annealed at 750 °C. The as-received surface was composed of Si and O; after a brief sputter etch a characteristic Pt peak became visible and the O peak decreased substantially. Depth profiles detected Si throughout the Pt capping layer but not in the TiW layers. We suspect that Si diffuses from the SiC substrate into the Pt capping layer and surface Si also reacts with O2 to from an oxide. These reactions, in combination with incomplete SiC/TiW interface reactions, are suspected to cause the increase of ρc for samples annealed between 650 and 850 °C. Annealing at 950 °C gave the lowest contact resistance of 2.3×10-5. Long-term testing at 300 °C for 190 hours, in atmosphere, was performed on contacts annealed at 450 °C. When heated, the contacts initial ρc of 2.1×10-4 cm2 increased to ~4×10-3 cm2 which remained stable for the test duration. After long-term testing the sample ρc measured at room temperature decreased to 9.8×10-5 cm2.


2001 ◽  
Vol 693 ◽  
Author(s):  
Th. Gessmann ◽  
Y.-L. Li ◽  
J. W. Graff ◽  
E. F. Schubert ◽  
J. K. Sheu

AbstractA novel type of low-resistance ohmic contacts is demonstrated utilizing polarization-induced electric fields in thin p-type InGaN layers on p-type GaN. An increase of the hole tunneling probability through the barrier and a concomitant significant decrease of the specific contact resistance can be attributed to a reduction of the tunneling barrier width in the InGaN capping layers due to the polarization-induced electric fields. The specific contact resistance of Ni (10 nm) / Au (30 nm) contacts deposited on the InGaN capping layers was determined by the transmission line method. Specific contact resistances of 1.2 × 10-2 Ω cm2 and 6 × 10-3 & cm2 were obtained for capping layer thicknesses of 20 nm and 2 nm, respectively.


1990 ◽  
Vol 216 ◽  
Author(s):  
Patrick W. Leech ◽  
Geoffrey K. Reeves ◽  
Martyn H. Kibel

ABSTRACTThe electrical characteristics of In, Sn, Au and Pt contacts on n-type Hg0.4Cd0.6Te formed in the presence and absence of prior In2+ implantation have been examined. Measurements of specific contact resistance made using a Transmission Line Model have shown that the unimtlanted In/Hg0.4Cd0.6 and Sn/Hg0.4Cd0.6 junctions gave values of pc = 3.0x10−3 to 4.0x10−3 ohm.cm2. Auger sputter profiles of the asdeposited In/Hg0.4Cd0.6 and Sn/Hg0.4Cd0.6 interfaces have shown a significant in-diffusion of the metal overlayer. The influence of shallow In2+ implantation prior to metallization was an increase in pc which occurred above a dose of 1013 ions/cm2. In contrast, Pt and Au formed Schottky barrier diodes on n-type Hg0.4Cd0.6 with øb=0.69eV for Pt and øb=0.79eV for Au. With prior In2+ implantation, both Pt and Au contacts exhibited an ohmic behaviour with pc= 2x10−1 ohm.cm2. These results have significance in the fabrication of devices for 1.0 -2.5μm optical communications.


1983 ◽  
Vol 25 ◽  
Author(s):  
H.B. Harrison ◽  
G.K. Reeves

ABSTRACTAn integral part of very large scale integrated (VLSI) circuits is the multilayer structures for electrical interconnection and insulation. Many conducting materials are used for interconnection including polysilicon, silicon, silicides, polycides and metals. An important point in considering these materials is the interconnection between them and the corresponding characterization of the interface by way of the specific contact resistance, which directly affects the interfacial contact resistance.For a planar ohmic contact formed between a metal and any layer with a much larger sheet resistance (for example single crystal silicon) a technique based on the transmission line model provides a method of characterizing these contacts. However, for planar contacts between layers with comparable sheet resistivities for example polysilicon to single crystal silicon this technique must be modified. In this paper we review the transmission line approach used to obtain the specific contact resistance between such layers and provide initial results of measurements made on the poly to single crystal interface. We also present a series of test structures, currently under fabrication that will provide more detailed experimental data.


2014 ◽  
Vol 896 ◽  
pp. 351-353
Author(s):  
Asban Dolah ◽  
Muhammad Azmi Abd Hamid ◽  
Mohamad Deraman ◽  
Ashaari Yusof ◽  
Nor Azhadi Ngah ◽  
...  

In this study, Ohmic contact were fabricated on AlGaAs HEMTs structure. A good metal-semiconductor interface are essentially for achieving lower specific contact resistance. An AlGaAs epi wafer was supply by the vendor. AlGaAs substrate was cleaned using wet chemical etching. Electrodes were fabricated through a sequenced of lithography, cleaning, sputtering and lift-off processes. The electrodes were made with metal layers of Ge, Au and Ni. Parameters such as metal thickness, annealing temperatures (from 300°C to 400°C) and annealing time were varies during fabrication process. Electrical characterizations after annealing are carried out using transmission line method (TLM) to obtain the specific contact resistance. Annealing temperature between 340°C to 360°C produced contact resistance below 5 x 10ˉ³Ω/cm-2.


Sign in / Sign up

Export Citation Format

Share Document