Sub-10 nm High-k Dielectric SOI-FinFET for HighPerformance Low Power Applications

Author(s):  
Ajay Kumar ◽  
Shankul Saini ◽  
Abhisht Gupta ◽  
Neha Gupta ◽  
Madan Mohan Tripathi ◽  
...  
Keyword(s):  
High K ◽  
2021 ◽  
Author(s):  
Prashant Kumar ◽  
Munish Vashishath ◽  
Neeraj Gupta ◽  
Rashmi Gupta

Abstract This paper describes the impression of low-k/high-k dielectric on the performance of Double Gate Junction less (DG-JL) MOSFET. An analytical model of the threshold voltage of DG-JLFET has been presented. Poisson’s equation is solved using the parabolic approximation to find out the threshold voltage. The effect of high-k on various performance parameters of N-type DG-JLFET is explored. The comparative analysis has been carried out between conventional gate oxide, multi oxide and high-k oxide in terms of Drain Induced Barrier Lowering (DIBL), threshold voltage, figure of merit (ION/IOFF) and sub-threshold slope (SS). The high-k oxide has shown superlative performance as compared to others. The results are further analyzed for various device structures. The DG-JLFET with HfO2 exhibits excellent attainment by mitigating the Short Channel Effects (SCEs). The significant reduction in off current makes the device suitable for ultra-low power applications. There is a 61.9 % and 34.29% improvement in the figure of merit and sub-threshold slope in the proposed device as compared to other devices. The simulation of DG-JLFET is carried out using the Silvaco TCAD tool.


2019 ◽  
Vol 1 (5) ◽  
pp. 711-717 ◽  
Author(s):  
Qi-Jun Sun ◽  
Tan Li ◽  
Wei Wu ◽  
Shishir Venkatesh ◽  
Xin-Hua Zhao ◽  
...  

2018 ◽  
Author(s):  
Seng Nguon Ting ◽  
Hsien-Ching Lo ◽  
Donald Nedeau ◽  
Aaron Sinnott ◽  
Felix Beaudoin

Abstract With rapid scaling of semiconductor devices, new and more complicated challenges emerge as technology development progresses. In SRAM yield learning vehicles, it is becoming increasingly difficult to differentiate the voltage-sensitive SRAM yield loss from the expected hard bit-cells failures. It can only be accomplished by extensively leveraging yield, layout analysis and fault localization in sub-micron devices. In this paper, we describe the successful debugging of the yield gap observed between the High Density and the High Performance bit-cells. The SRAM yield loss is observed to be strongly modulated by different active sizing between two pull up (PU) bit-cells. Failure analysis focused at the weak point vicinity successfully identified abnormal poly edge profile with systematic High k Dielectric shorts. Tight active space on High Density cells led to limitation of complete trench gap-fill creating void filled with gate material. Thanks to this knowledge, the process was optimized with “Skip Active Atomic Level Oxide Deposition” step improving trench gap-fill margin.


Sign in / Sign up

Export Citation Format

Share Document