The quantification of sea ice melt features from low level-aerial photographs

Author(s):  
C.P. Derksen ◽  
J.M. Piwowar ◽  
E.F. LeDrew
1997 ◽  
Vol 29 (3) ◽  
pp. 345 ◽  
Author(s):  
C. Derksen ◽  
J. Piwowar ◽  
E. LeDrew

2017 ◽  
Vol 30 (17) ◽  
pp. 6999-7016 ◽  
Author(s):  
Zheng Liu ◽  
Axel Schweiger

Cloud response to synoptic conditions over the Beaufort and Chukchi seasonal ice zone is examined. Four synoptic states with distinct thermodynamic and dynamic signatures are identified using ERA-Interim reanalysis data from 2000 to 2014. CloudSat and CALIPSO observations suggest control of clouds by synoptic states. Warm continental air advection is associated with the fewest low-level clouds, while cold air advection generates the most low-level clouds. Low-level clouds are related to lower-tropospheric stability and both are regulated by synoptic conditions. High-level clouds are associated with humidity and vertical motions in the upper atmosphere. Observed cloud vertical and spatial variability is reproduced well in ERA-Interim, but winter low-level cloud fraction is overestimated. This suggests that synoptic conditions constrain the spatial extent of clouds through the atmospheric structure, while the parameterizations for cloud microphysics and boundary layer physics are critical for the life cycle of clouds in numerical models. Sea ice melt onset is related to synoptic conditions. Melt onsets occur more frequently and earlier with warm air advection. Synoptic conditions with the highest temperatures and precipitable water are most favorable for melt onsets even though fewer low-level clouds are associated with these conditions.


2021 ◽  
Author(s):  
Christoph Braun ◽  
Aiko Voigt ◽  
Johannes Hörner ◽  
Joaquim G. Pinto

<p>Stable waterbelt climate states with close to global ice cover challenge the classical Snowball Earth hypothesis because they provide a robust explanation for the survival of advanced marine species during the Neoproterozoic glaciations (1000 – 541 Million years ago). Whether Earth’s climate stabilizes in a waterbelt state or rushes towards a Snowball state is determined by the magnitude of the ice-albedo feedback in the subtropics, where dark, bare sea ice instead of snow-covered sea ice prevails. For a given bare sea-ice albedo, the subtropical ice-albedo feedback and thus the stable range of the waterbelt climate regime is sensitive to the albedo over ice-free ocean, which is largely determined by shortwave cloud-radiative effects (CRE). In the present-day climate, CRE are known to dominate the spread of climate sensitivity across global climate models. We here study the impact of uncertainty associated with CRE on the existence of geologically relevant waterbelt climate regimes using two global climate models and an idealized energy balance model. We find that the stable range of the waterbelt climate regime is very sensitive to the abundance of subtropical low-level mixed-phase clouds. If subtropical cloud cover is low, climate sensitivity becomes so high as to inhibit stable waterbelt states.</p><p>The treatment of mixed-phase clouds is highly uncertain in global climate models. Therefore we aim to constrain the uncertainty associated with their CRE by means of a hierarchy of global and regional simulations that span horizontal grid resolutions from 160 km to 300m, and in particular include large eddy simulations of subtropical mixed-phase clouds located over a low-latitude ice edge. In the cold waterbelt climate subtropical CRE arise from convective events caused by strong meridional temperature gradients and stratocumulus decks located in areas of large-scale descending motion. We identify the latter to dominate subtropical CRE and therefore focus our large eddy simulations on subtropical stratocumulus clouds. By conducting simulations with two extreme scenarios for the abundance of atmospheric mineral dust, which serves as ice-nucleating particles and therefore can control mixed-phase cloud physics, we aim to estimate the possible spread of CRE associated with subtropical mixed-phase clouds. From this estimate we may assess whether Neoproterozoic low-level cloud abundance may have been high enough to sustain a stable waterbelt climate regime.</p>


2021 ◽  
Author(s):  
Marc Oggier ◽  
Hajo Eicken ◽  
Robert Rember ◽  
Allison Fong ◽  
Dmitry V. Divine ◽  
...  

<p>Sea ice affects the exchange of energy and matter between the atmosphere and the ocean from local to hemispheric scales. Salt fluxes across the ice-ocean interface that drive thermohaline mixing beneath growing sea ice are important elements of upper ocean nutrient and carbon exchange. Sea-ice melt releases freshwater into the upper ocean and results in formation of melt ponds that affect gas and energy transfer across the atmosphere-ice interface. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) provided an opportunity to follow sea-ice evolution and exchange processes over a full seasonal cycle in a rapidly changing ice cover. To this end, approximately 25 sea-ice cores were collected at 2 distinct sites, representing first-year and multi-year ice, to monitor physical, biological and geochemical processes relevant to atmosphere-ice-ocean exchange processes. Here we compare the growth and decay of first-year ice in the Central Arctic during the winter 2019-2020 to that of landfast first-year ice at Utqiaġvik, Alaska, from 1998 to 2016. Ice stratigraphy was similar at both sites with about 15 cm of granular ice on top of columnar ice, with a comparable growth history with a similar maximum ice thickness of 1.6-1.7 m. We aggregated the sea-ice bulk salinity and temperature profiles using a degree-day approach, and examined brine and freshwater fluxes at lower and upper interfaces of the ice, respectively. Preliminary results show lower sea-ice bulk salinity during the growth season and greater desalination at the ice surface during the melt season at the MOSAiC floe in comparison to Utqiaġvik.</p>


2014 ◽  
Vol 8 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
J. Zhou ◽  
J.-L. Tison ◽  
G. Carnat ◽  
N.-X. Geilfus ◽  
B. Delille

Abstract. We report on methane (CH4) dynamics in landfast sea ice, brine and under-ice seawater at Barrow in 2009. The CH4 concentrations in under-ice water ranged from 25.9 to 116.4 nmol L−1sw, indicating a supersaturation of 700 to 3100% relative to the atmosphere. In comparison, the CH4 concentrations in sea ice ranged from 3.4 to 17.2 nmol L−1ice and the deduced CH4 concentrations in brine from 13.2 to 677.7 nmol L−1brine. We investigated the processes underlying the difference in CH4 concentrations between sea ice, brine and under-ice water and suggest that biological controls on the storage of CH4 in ice were minor in comparison to the physical controls. Two physical processes regulated the storage of CH4 in our landfast ice samples: bubble formation within the ice and sea ice permeability. Gas bubble formation due to brine concentration and solubility decrease favoured the accumulation of CH4 in the ice at the beginning of ice growth. CH4 retention in sea ice was then twice as efficient as that of salt; this also explains the overall higher CH4 concentrations in brine than in the under-ice water. As sea ice thickened, gas bubble formation became less efficient, CH4 was then mainly trapped in the dissolved state. The increase of sea ice permeability during ice melt marked the end of CH4 storage.


2016 ◽  
Author(s):  
Leif G. Anderson ◽  
Jörgen Ek ◽  
Ylva Ericson ◽  
Christoph Humborg ◽  
Igor Semiletov ◽  
...  

Abstract. The Siberian Shelf Seas are areas of extensive biogeochemical transformation of organic matter, both of marine and terrestrial origin. This in combination with brine production from sea ice formation results in a cold bottom water of relative high salinity and partial pressure of carbon dioxide (pCO2). Data from the SWERUS-C3 expedition compiled on the icebreaker Oden in July to September 2014 show the distribution of such waters at the outer shelf, as well as their export into the deep central Arctic basins. Very high pCO2 water, up to close to 1000 µatm, was observed associated with high nutrients and low oxygen concentrations. Consequently the saturation state of calcium carbonate was low, down to less than 0.8 for calcite and 0.5 for aragonite. Waters undersaturated in aragonite were also observed in the surface in waters at equilibrium with atmospheric CO2, however, at these conditions the cause of under-saturation was low salinity from river runoff and/or sea ice melt. The calcium carbonate corrosive water was observed all along the continental margin and well out into the deep Makarov and Canada Basins at a depth from about 50 m depth in the west to about 150 m in the east. These waters of low aragonite saturation state are traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean north of Greenland and in the western Fram Strait, thus potentially impacting the marine life in the North Atlantic Ocean.


2014 ◽  
Vol 8 (1) ◽  
pp. 845-885 ◽  
Author(s):  
R. K. Scharien ◽  
K. Hochheim ◽  
J. Landy ◽  
D. G. Barber

Abstract. Observed changes in the Arctic have motivated efforts to understand and model its components as an integrated and adaptive system at increasingly finer scales. Sea ice melt pond fraction, an important summer sea ice component affecting surface albedo and light transmittance across the ocean-sea ice–atmosphere interface, is inadequately parameterized in models due to a lack of large scale observations. In this paper, results from a multi-scale remote sensing program dedicated to the retrieval of pond fraction from satellite C-band synthetic aperture radar (SAR) are detailed. The study was conducted on first-year sea (FY) ice in the Canadian Arctic Archipelago during the summer melt period in June 2012. Approaches to retrieve the subscale FY ice pond fraction from mixed pixels in RADARSAT-2 imagery, using in situ, surface scattering theory, and image data are assessed. Each algorithm exploits the dominant effect of high dielectric free-water ponds on the VV/HH polarisation ratio (PR) at moderate to high incidence angles (about 40° and above). Algorithms are applied to four images corresponding to discrete stages of the seasonal pond evolutionary cycle, and model performance is assessed using coincident pond fraction measurements from partitioned aerial photos. A RMSE of 0.07, across a pond fraction range of 0.10 to 0.70, is achieved during intermediate and late seasonal stages. Weak model performance is attributed to wet snow (pond formation) and synoptically driven pond freezing events (all stages), though PR has utility for identification of these events when considered in time series context. Results demonstrate the potential of wide-swath, dual-polarisation, SAR for large-scale observations of pond fraction with temporal frequency suitable for process-scale studies and improvements to model parameterizations.


2003 ◽  
Vol 15 (3) ◽  
pp. 353-364 ◽  
Author(s):  
C. RIAUX-GOBIN ◽  
M. POULIN ◽  
R. PRODON ◽  
P. TREGUER

Annual land-fast ice, particularly an unconsolidated layer or “platelet ice-like” layer (PLI), was sampled in spring 1995 to study the spatial and short-term variations of ice-associated diatoms. Under-ice water, a lead and small polynyas were also sampled. Along a 7 km seaward transect a geographical gradient was evident, with some rare diatom species present only in the offshore PLI, whereas others (mainly pennate diatoms) were ubiquitous. The dense microphytic PLI community as well as the phytoplankton was diatom-dominated, but, within these two communities, marked differences appeared. First, the sea-ice communities (PLI and solid bottom ice) were moderately diverse (36 species), mostly composed of pennate diatoms, of which many were chain forming or tube-dwelling. Dominant taxa were Navicula glaciei, Berkeleya adeliensis, Nitzschia stellata, Amphiprora kufferathii and Nitzschia lecointei. Some differences in the distribution of the most dominant species appeared within the bottom ice and the PLI, attesting to differences in the origin or/and growing capability of these diatoms in these two ice compartments. Under-ice water species composition was mixed with sea-ice communities only on the most coastal sites and during ice melt. Maximum cell numbers were mostly noticed in the PLI, reaching up to 1010 cells l−1 and very high Chl a concentrations (exceptionally up to 9.8 mg Chl a l−1 or 1.9 g Chl a m−2, from a 10 to 20 cm thick PLI layer, close to the continent). Secondly, the phytoplankton in the lead and small polynyas had a low diversity, very low standing stocks (on an average 0.69 μg Chl a l−1) and cell densities (2 × 104 cells l−1). Some species from the polynyas were similar to those of the PLI, such as Navicula glaciei, but others were typically planktonic, such as Chaetoceros cf. neglectus. The presence of encysted cells (Chaetoceros and Chrysophytes) was also noticeable in the polynya water. In early spring no seeding process was obvious from the PLI to polynya water. A comparison with similar fast-ice diatom communities in other parts of coastal Antarctica, is presented.


2015 ◽  
Vol 56 (69) ◽  
pp. 1-8 ◽  
Author(s):  
Mats A. Granskog ◽  
Daiki Nomura ◽  
Susann Müller ◽  
Andreas Krell ◽  
Takenobu Toyota ◽  
...  

AbstractAbsorption and fluorescence of chromophoric dissolved organic matter (CDOM) in sea ice and surface waters in the southern Sea of Okhotsk was examined. Sea-water CDOM had featureless absorption increasing exponentially with shorter wavelengths. Sea ice showed distinct absorption peaks in the ultraviolet, especially in younger ice. Older first-year sea ice had relatively flat absorption spectra in the ultraviolet range. Parallel factor analysis (PARAFAC) identified five fluorescent CDOM components, two humic-like and three protein-like. Sea water was largely governed by humic-like fluorescence. In sea ice, protein-like fluorescence was found in considerable excess relative to sea water. The accumulation of protein-like CDOM fluorescence in sea ice is likely a result of biological activity within the ice. Nevertheless, sea ice does not contribute excess CDOM during melt, but the material released will be of different composition than that present in the underlying waters. Thus, at least transiently, the CDOM introduced during sea-ice melt might provide a more labile source of fresher protein-like DOM to surface waters in the southern Sea of Okhotsk.


Sign in / Sign up

Export Citation Format

Share Document