Sea ice and open water classification of sar imagery using cnn-based transfer learning

Author(s):  
Yan Xu ◽  
K. Andrea Scott
2021 ◽  
Vol 13 (9) ◽  
pp. 1734
Author(s):  
Salman Khaleghian ◽  
Habib Ullah ◽  
Thomas Kræmer ◽  
Nick Hughes ◽  
Torbjørn Eltoft ◽  
...  

We explore new and existing convolutional neural network (CNN) architectures for sea ice classification using Sentinel-1 (S1) synthetic aperture radar (SAR) data by investigating two key challenges: binary sea ice versus open-water classification, and a multi-class sea ice type classification. The analysis of sea ice in SAR images is challenging because of the thermal noise effects and ambiguities in the radar backscatter for certain conditions that include the reflection of complex information from sea ice surfaces. We use manually annotated SAR images containing various sea ice types to construct a dataset for our Deep Learning (DL) analysis. To avoid contamination between classes we use a combination of near-simultaneous SAR images from S1 and fine resolution cloud-free optical data from Sentinel-2 (S2). For the classification, we use data augmentation to adjust for the imbalance of sea ice type classes in the training data. The SAR images are divided into small patches which are processed one at a time. We demonstrate that the combination of data augmentation and training of a proposed modified Visual Geometric Group 16-layer (VGG-16) network, trained from scratch, significantly improves the classification performance, compared to the original VGG-16 model and an ad hoc CNN model. The experimental results show both qualitatively and quantitatively that our models produce accurate classification results.


2016 ◽  
Author(s):  
Natalia Zakhvatkina ◽  
Anton Korosov ◽  
Stefan Muckenhuber ◽  
Stein Sandven ◽  
Mohamed Babiker

Abstract. Synthetic aperture radar (SAR) data from RADARSAT-2 (RS2) taken in dual-polarization mode provide additional information for discriminating sea ice and open water compared to single-polarization data. We have developed a fully automatic algorithm to distinguish between open water (rough/calm) and sea ice based on dual-polarized RS2 SAR images. Several technical problems inherent in RS2 data were solved on the pre-processing stage including thermal noise reduction in HV-polarization channel and correction of angular backscatter dependency on HH-polarization. Texture features are used as additional information for supervised image classification based on Support Vector Machines (SVM) approach. The main regions of interest are the ice-covered seas between Greenland and Franz Josef Land. The algorithm has been trained using 24 RS2 scenes acquired during winter months in 2011 and 2012, and validated against the manually derived ice chart product from the Norwegian Meteorological Institute. Between 2013 and 2015, 2705 RS2 scenes have been utilised for validation and the average classification accuracy has been found to be 91 ± 4 %.


Author(s):  
Hiroaki Hashimoto ◽  
Seiji Kameda ◽  
Hitoshi Maezawa ◽  
Satoru Oshino ◽  
Naoki Tani ◽  
...  

To realize a brain–machine interface to assist swallowing, neural signal decoding is indispensable. Eight participants with temporal-lobe intracranial electrode implants for epilepsy were asked to swallow during electrocorticogram (ECoG) recording. Raw ECoG signals or certain frequency bands of the ECoG power were converted into images whose vertical axis was electrode number and whose horizontal axis was time in milliseconds, which were used as training data. These data were classified with four labels (Rest, Mouth open, Water injection, and Swallowing). Deep transfer learning was carried out using AlexNet, and power in the high-[Formula: see text] band (75–150[Formula: see text]Hz) was the training set. Accuracy reached 74.01%, sensitivity reached 82.51%, and specificity reached 95.38%. However, using the raw ECoG signals, the accuracy obtained was 76.95%, comparable to that of the high-[Formula: see text] power. We demonstrated that a version of AlexNet pre-trained with visually meaningful images can be used for transfer learning of visually meaningless images made up of ECoG signals. Moreover, we could achieve high decoding accuracy using the raw ECoG signals, allowing us to dispense with the conventional extraction of high-[Formula: see text] power. Thus, the images derived from the raw ECoG signals were equivalent to those derived from the high-[Formula: see text] band for transfer deep learning.


2020 ◽  
Author(s):  
Adriano Lemos ◽  
Céline Heuzé

<p>The sea ice thickness in the Weddell Sea during the austral winter normally exceeds 1 m, but in the case of a polynya, this thickness decreases to 10 cm or less. There are two theories as to why the Weddell Polynya opens: 1) comparatively warm oceanic water upwelling from its nominal depth of several hundred metres to the surface where it melts the sea ice from underneath; or 2) opening of a lead by a passing storm, lead which will then be maintained open either by the atmosphere or ocean and grow. The objective of this study is to estimate how long in advance the recent Weddell Polynya opening could have been detected by synthetic aperture radar (SAR) images due to the decrease of the sea ice thickness and/or early appearance of leads. We use high temporal and spatial resolution SAR images from the Sentinel-1 constellation (C-band) and ALOS2 (L-band) during the austral winters 2014-2018. We use an adapted version of the algorithm developed by Aldenhoff et al. (2018) to monitor changes in sea ice thickness over the polynya region. The algorithm detects the transition of the sea ice thickness through changes in small scale surface roughness and thus reduced backscatter, and allowing us to distinguish three different categories: ice, thin ice, and open water. The transition from ice to thin ice and then to open water indicates that the polynya is melted from under, whereas a direct transition from ice to open water will reveal leads. The high resolution and good coverage of the SAR imagery, and a combined effort of different satellites sensors (e.g. infrared and microwave sensors), opens the possibility of an early detection of Weddell Polynya opening.</p>


Author(s):  
Xiaoming Li ◽  
Yan Sun ◽  
Qiang Zhang

In this paper, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization (vertical-horizontal, VH or horizontal-vertical, HV) data in extra wide (EW) swath mode based on the machine learning algorithm support vector machine (SVM). The classification basis includes the S1 radar backscatter coefficients and texture features that are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e. entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparison shows good agreement between the SAR-derived sea ice cover using the proposed method and a visual inspection, of which the accuracy reaches approximately 90% - 95% based on a few cases. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of extracted sea ice cover by using S1 data is more than 80%.


Author(s):  
C.C. Wackerman ◽  
R.R. Jentz ◽  
R.A. Shuchman

Polar Record ◽  
1995 ◽  
Vol 31 (177) ◽  
pp. 135-146 ◽  
Author(s):  
D.M. Smith ◽  
E.C. Barrett ◽  
J.C. Scott

AbstractThis paper describes the development of a practical algorithm for the classification of sea-ice types from ERS-1 synthetic aperture radar (SAR) data. The algorithm was based on a combination of grey level and texture information in order to overcome ambiguous grey level values of different ice types. The problem of calculating texture parameters for windows containing more than one ice type was overcome by first segmenting the image so that only pixels from the same segment were included in the calculation of the texture measure. The segmentation procedure was based on the iterative application of a speckle noise reduction filter, and was thus crucially dependent on the ability of such a filter to smooth out noise without destroying edges and fine features. In order to achieve this, a modification to the sigma filter of Lee (1983b) was developed; it out-performed the sigma filter for a model problem. Two ERS-1 SAR scenes of the marginal ice zone east of Spitsbergen in March 1992 were analysed by calculating values of grey level and range for different ice types contained within raw data extracts. Although the grey levels of some of the ice types overlapped, most of the ambiguity was removed through the additional use of range. It was also necessary to test for the wave-like appearance of open water. The classification scheme was demonstrated to identify correctly most of the grease/new ice, first-year ice, multiyear ice, rough ice, pancake ice, and open water in the two SAR scenes, although there was some misclassification of open water as first-year ice.


1992 ◽  
Vol 38 (128) ◽  
pp. 23-35 ◽  
Author(s):  
Matti Leppäranta ◽  
Rlsto Kuittinen ◽  
Jan Askne

Abstract Remote-sensing methods are the primary ones used for ice mapping in the Baltic Sea. A major methodological improvement is now being introduced by satellite radars due to their weather independency and high resolution. To learn how to use ERS-1 synthetic aperture radar (SAR) data, an extensive field programme BEPERS (Bothnian Experiment in Preparation for ERS-1) with airborne SARs has been arranged. The BEPERS pilot study was undertaken in 1987 using the French VARAN-S X-band SAR. The SAR was flown on 1 day over four study areas of size approximately 10 km x 50 km, and intensive validation observations were made. The data were most useful for the education they provided on how to work with SAR in sea-ice mapping. They have been used for developing SAR image-analysis methods, back-scatter modelling investigations and geophysical validation of SAR imagery. Cleaning-up of images consisted of speckle reduction and segmentation. Back-scatter characteristics of undeformed ice and ridges were examined. Ice-type classification was based on the box-classification method. Eight ice types were defined but basically only two types, undeformed ice/open water and deformed ice, could be discriminated. Two basic problems of high practical importance remained: how to discriminate between (1) open water and undeformed ice, and (2) ridged ice and brash ice. The data further showed illustrative examples of SAR imagery over sea ice.


1987 ◽  
Vol 9 ◽  
pp. 247-247
Author(s):  
Benjamin Holt ◽  
F.D. Carsey

The ability to distinguish the several major types of sea ice with active radar instruments has been well studied in recent years. The separation of sea-ice types by radar results principally from variations in radar back-scatter due to characteristic differences of these ice types in surface morphology and brine content. When sea ice is viewed with an active radar at angles greater than about 20° from nadir, undeformed ice reflects radar waves and results in a low return, while ridges, hummocks, and small-scale surface features scatter the radar waves and produce a high return. The presence of salt increases the dielectric constant of ice; penetration by radar into the ice is then negligible, and the return is essentially determined by surface morphology. The absence of salt reduces the dielectric properties of ice; radar waves can then penetrate the ice to some depth and are scattered by air bubbles and brine-drainage channels (called volume scattering), thereby enhancing the return even for roughened surfaces. All these properties vary significantly with radar frequency and polarization as well as seasonally. For example, higher radar frequencies respond to smaller-scale surface features, while lower radar frequencies penetrate further into the ice with resulting volume scattering.The high-resolution imagery from synthetic aperture radars (SAR), mounted on aircraft, shuttle, or satellite platforms, is very effective for many sea-ice studies, including the separation of ice types. An aircraft-mounted X-band (9 GHz) SAR, for example, can discriminate smooth first-year ice, rough first-year ice, multi-year ice, and open water by the intensity (tone) of the radar returns and floe geometry. The preferred SARs to date for satellites and shuttle platforms have been L-band (1–2 GHz) systems. SAR imagery of sea ice was extensively acquired by Seasat in 1978 over the Beaufort Sea, with limited quantities obtained by the Shuttle Imaging Radar (SIR-B) over the Weddell Sea in 1984. While L-band SAR can discriminate rough and smooth ice along with roughened open water based on image intensity and floe geometry, the returns from thick first-year ice and multi-year ice are not clearly distinguishable. The fact that there is volume scattering from multi-year ice suggests that there may be textural or spatial frequency variations that could be used to separate these two major ice types in radar imagery. In order to investigate the separation of sea-ice types in the large amount of L-band SAR imagery available, image-analysis techniques including filtering and classification programs have been utilized, pointing towards an automatic classification algorithm for use in future SAR sea-ice data sets, especially from space.An important characteristic of all SAR imagery is the presence of image speckle, a coherent form of noise caused by the random variability of scatterers across even a uniform surface. Most SAR processors reduce this effect by averaging multiple independent samples but this is done at the cost of reducing resolution. Speckle reduction can also be accomplished by filtering. Several filters have been tested including median, box, and adaptive edge filters. Each filter has different characteristics in terms of smoothing speckle and in the response to sharp gradients or edges, such as ridge or lead openings, as well as computational requirements. Optimization of each filter’s parameters has been determined by the quality of classification of each ice type.The classification programs that have been tested are based on tone and texture image characteristics. The programs are supervised; that is, a small training area for each class is pre-selected for statistical analysis. From these statistics, the remainder of the imagery is subjected to the particular classification algorithm. The tone program separates classes based on the mean, standard deviation, and number of standard deviations of each class, and includes a Bayesian maximum-likelihood classifier for ambiguous elements. The texture program determines the statistical homogeneity of each class and the optimal segmentation of each small area into the various classes.


Sign in / Sign up

Export Citation Format

Share Document