Pipelined adder graph optimization for high speed multiple constant multiplication

Author(s):  
Martin Kumm ◽  
Peter Zipf ◽  
Mathias Faust ◽  
Chip-Hong Chang

In recent years, the filter is one of the key elements in signal processing applications to remove unwanted information. However, traditional FIR filters have been consumed more resources due to complex multiplier design. Mostly the complexity of the FIR filter is dominated by multiplier design. The conventional multipliers can be realized by Single Constant Multiplication (SCM) and Multiple Constant Multiplication (MCM) algorithms using shift and add/subtract operations. In this paper, a hybrid state decision tree algorithm is introduced to reduce hardware utilization (area) and increase speed in filter tap cells of FIR. The proposed scheme generates a decision tree to perform shift & addition and accumulation based on the combined SCM/MCM approach. The proposed FIR filter was implemented in Xilinx Field Programmable Gate Array (FPGA) platform by using Verilog language. The experimental results of the DTG-FIR filter were averagely reduced the 48.259% of LUTs, 51.567 % of flip flops and 44.497 % of slices at 183.122 MHz of operating frequency on the Virtex-5 than existing VP-FIR.


2016 ◽  
Vol 63 (2) ◽  
pp. 176-180 ◽  
Author(s):  
Abdelkrim K. Oudjida ◽  
Ahmed Liacha ◽  
Mohammed Bakiri ◽  
Nicolas Chaillet

Author(s):  
Gundugonti Kishore Kumar ◽  
Balaji Narayanam

In this paper, a modified finite impulse response (FIR) filter design has been proposed for the denoising bio-electrical signals like Electrooculography(EOG). The proposed filter architecture uses modified multiplier block, which is implemented using modified Radix-[Formula: see text] arithmetic-based representation for minimizing the multiple constant multiplication and conventional ripple carry adders are replaced with [Formula: see text] compressors. This proposed architecture is implemented by using Radix-[Formula: see text]-based multiplier and [Formula: see text] compressor architectures for achieving better improvement in the critical path delay. The Radix-[Formula: see text]-based arithmetic bit recording is used in order to reduce the design complexity of the multiplication. The proposed architecture significantly reduced the delay when compared to existing and conventional architectures.


2017 ◽  
Vol 10 (13) ◽  
pp. 344
Author(s):  
Bhargav Shukla ◽  
Augusta Sophy Beulet

This paper introduces the computationally efficient, low power, high-speed partial reconfigurable finite impulse response (FIR) filter design usingmultiple constant multiplication technique (MCM). The complexity of many digital signal processing (DSP) systems is reduced by MCM operation. Forthe better performance of DSP systems, MCM operation is not sufficient. To get better results, some other operations are used with MCM. That’s why,this paper introduces a common sub-expression elimination operation of FIR filter design can be solved by decreasing the number of operators. Usingthese techniques shows the efficiency by reducing area when compared to previously used algorithms designed.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document