Ultra Wideband Network in Short-Range Wireless System for Personal Computer

Author(s):  
Anchana Khemphila ◽  
Sathaporn Promwong
2012 ◽  
Vol E95.C (10) ◽  
pp. 1598-1609 ◽  
Author(s):  
Koji TAKINAMI ◽  
Junji SATO ◽  
Takahiro SHIMA ◽  
Mitsuhiro IWAMOTO ◽  
Taiji AKIZUKI ◽  
...  
Keyword(s):  

2015 ◽  
Vol 3 (2) ◽  
pp. 1-14
Author(s):  
Abbas Saleh Hassan

Impulse Radio - Ultra Wideband (IR-UWB) is a wireless technology system that offers a high data rate within a short range. Therefore, IR-UWB system is regarded as an excellent physical layer solution to the multi-piconet Wireless Personal Area Network (WPAN) applications. In spite of all the advantages of IR-UWB, there are several fundamental and practical challenges that need to be carefully addressed. The big and most important one among these challenges is the interference. Two types of Rake receivers are designed and simulated to highly mitigate the MUI these are (PRake receiver) and (SRake receiver).


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4812 ◽  
Author(s):  
Pavol Galajda ◽  
Martin Pecovsky ◽  
Miroslav Sokol ◽  
Martin Kmec ◽  
Dusan Kocur

Short-range ultra-wideband (UWB) radar sensors belong to very promising sensing techniques that have received vast attention recently. The M-sequence UWB sensing techniques for radio detection and ranging feature several advantages over the other short-range radars, inter alia superior integration capabilities. The prerequisite to investigate their capabilities in real scenarios is the existence of physically available hardware, i.e., particular functional system blocks. In this paper, we present three novel blocks of M-sequence UWB radars exploiting application-specific integrated circuit (ASIC) technology. These are the integrated 15th-order M-sequence radar transceiver on one chip, experimental active Electronic Communication Committee (ECC) bandpass filter, and miniature transmitting UWB antenna with an integrated amplifier. All these are custom designs intended for the enhancement of capabilities of an M-sequence-based system family for new UWB short-range sensing applications. The design approaches and verification of the manufactured prototypes by measurements of the realized circuits are presented in this paper. The fine balance on technology capabilities (Fc of roughly 120 GHz) and thoughtful design process of the proposed blocks is the first step toward remarkably minimized devices, e.g., as System on Chip designs, which apparently allow broadening the range of new applications.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1411 ◽  
Author(s):  
Amjad Iqbal ◽  
Amor Smida ◽  
Nazih Mallat ◽  
Mohammad Islam ◽  
Sunghwan Kim

A minimally-sized, triple-notched band ultra-wideband (UWB) antenna, useful for many applications, is designed, analyzed, and experimentally validated in this paper. A modified maple leaf-shaped main radiating element with partial ground is used in the proposed design. An E-shaped resonator, meandered slot, and U-shaped slot are implemented in the proposed design to block the co-existing bands. The E-shaped resonator stops frequencies ranging from 1.8–2.3 GHz (Advanced Wireless System (AWS1–AWS2) band), while the meandered slot blocks frequencies from 3.2–3.8 GHz (WiMAX band). The co-existing band ranging from 5.6–6.1 GHz (IEEE 802.11/HIPERLANband) is blocked by utilizing the U-shaped section in the feeding network. The notched bands can be independently controlled over a wide range of frequencies using specific parameters. The proposed antenna is suitable for many applications because of its flat gain, good radiation characteristics at both principal planes, uniform group delay, and non-varying transfer function ( S 21 ) for the entire UWB frequency range.


Author(s):  
I KOMANG YOGI MAHARDIKA ◽  
Bambang Guruh Irianto ◽  
Torib Hamzah ◽  
Shubhrojit Misra

Central patient monitor that is not real-time and continues will cause inaccuracies monitoring results and also sending data that is still using cable will cause limited distance. The purpose of this research is to design a central monitoring based personal computer via Xbee Pro. The contribution of this research is,  the system works in real-time and continues, more parameters, using wireless, longer transmission distances. So that monitoring can be done in real-time and continue via wireless with more distance, then the wireless system uses the Xbee Pro module which has larger output power and uses the same number of wireless modules between transmitter and receiver. Body temperature was measured using the LM35 sensor and oxygen saturation in the blood was measured using the MAX30100 sensor. Data is sent using Xbee Pro and displayed on a personal computer. At the distance of receiving data approximately 25 meters with a wall divider, obtained results of smooth monitoring without any loss of data. The results showed that the average SpO2 error value was 0.34% in module 1 and 0.68% in module 2. The average value of body temperature error was 0.46% in module 1 and 0.72% in module 2. The results of this research can be implemented in a centralized patient monitoring system at the hospital, making it easier for health workers to monitor multiple patients, with the results of monitoring in real-time and continue, more parameters, via wireless with greater distance.


Sign in / Sign up

Export Citation Format

Share Document