Experimental demonstration of the active trench layout tuned 1200V CSTBT™ for lower dV/dt surge and turn-on switching loss

Author(s):  
Kazuya Konishi ◽  
Ryu Kamibaba ◽  
Mariko Umeyama ◽  
Atsushi Narazaki ◽  
Tetsuo Takahashi ◽  
...  
2019 ◽  
Vol 963 ◽  
pp. 797-800 ◽  
Author(s):  
Ajit Kanale ◽  
Ki Jeong Han ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


2019 ◽  
Vol 963 ◽  
pp. 873-877
Author(s):  
Wei Hua Shao ◽  
Xiao Ling Li ◽  
Hua Ping Jiang ◽  
Xuan Guo ◽  
Zheng Zeng ◽  
...  

The nature of diode reverse recovery is analyzed in this paper, and the reverse recovery loss is evaluated in a BOOST PFC converter using a silicon (Si) or silicon carbide (SiC) diode in the forward branch. Mathematical models of the forward conduction and reverse recovery losses are established to assess the influence of Si and SiC diodes. To characterize and quantify the losses related to diode reverse recovery, an 85~265V AC to 400V DC, 2kW BOOST PFC prototype is built with switching frequencies of 65kHz. It is found that the reverse-recovery inherent in a Si diode cannot be neglected. The switching loss is substantially smaller when the diode is a SiC one. In order to investigate further, a double pulse test rig is established, with the switch and the diode being either Si or SiC. The experimental results demonstrate that with a SiC diode, not only the diode conduction losses but also the transistor turn-on loss is greatly reduced.


2019 ◽  
Vol 963 ◽  
pp. 625-628
Author(s):  
Ajit Kanale ◽  
B. Jayant Baliga ◽  
Ki Jeong Han ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


2019 ◽  
Vol 963 ◽  
pp. 596-599
Author(s):  
Shuhei Nakata ◽  
Shota Tanaka

Recentlly, high speed switching circuits using SiC power device have been developed for reduction of switching loss and downsizing of electric products. The high speed switching leads to the rapid changing of the drain voltage (dV/dt) during the switching period. This paper reports the effects of the dV/dt impact on the self-turn-on and the characteristics of SiC-MOSFET, especially the temperature dependence. The results shows that the gate bias voltage to suppress the self-turn-on is negatively correlated with the temperature. And it is also found that the dV/dt impact breaks down the gate source insulation and the dV/dt value to the breakdown is positively correlated with the temperature.


2013 ◽  
Vol 740-742 ◽  
pp. 1060-1064 ◽  
Author(s):  
Katsumi Ishikawa ◽  
Kaoru Katoh ◽  
Ayumu Hatanaka ◽  
Kazutoshi Ogawa ◽  
Haruka Shimizu ◽  
...  

When using JFETs with a threshold voltage lower than 2 V in a power supply system or inverter system, a high-speed drive circuit capable of precisely controlling the gate current and a mounting method are important to reduce the switching loss. In this paper, a drive circuit of a normally-off SiC-JFET with a separate source terminal is proposed and the effects are evaluated. By dividing the common source inductance and applying the speed-up capacitor, the turn-on time and turn-on energy losses can be decreased by 40% and 60%, respectively. A speed-up capacitor larger than 100 nF greatly decreases the rising time (tr) and turn-on energy losses. By applying the developed normally-off SiC-JFETs and proposed gate driver to PFC circuits and DC/DC circuits, a highly efficient power supply will be achieved.


Sign in / Sign up

Export Citation Format

Share Document