Power Loss Comparison in a BOOST PFC Circuit Considering the Reverse Recovery of the Forward Diode

2019 ◽  
Vol 963 ◽  
pp. 873-877
Author(s):  
Wei Hua Shao ◽  
Xiao Ling Li ◽  
Hua Ping Jiang ◽  
Xuan Guo ◽  
Zheng Zeng ◽  
...  

The nature of diode reverse recovery is analyzed in this paper, and the reverse recovery loss is evaluated in a BOOST PFC converter using a silicon (Si) or silicon carbide (SiC) diode in the forward branch. Mathematical models of the forward conduction and reverse recovery losses are established to assess the influence of Si and SiC diodes. To characterize and quantify the losses related to diode reverse recovery, an 85~265V AC to 400V DC, 2kW BOOST PFC prototype is built with switching frequencies of 65kHz. It is found that the reverse-recovery inherent in a Si diode cannot be neglected. The switching loss is substantially smaller when the diode is a SiC one. In order to investigate further, a double pulse test rig is established, with the switch and the diode being either Si or SiC. The experimental results demonstrate that with a SiC diode, not only the diode conduction losses but also the transistor turn-on loss is greatly reduced.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Hongyan Zhao ◽  
Jiangui Chen ◽  
Yan Li ◽  
Fei Lin

Compared with a silicon MOSFET device, the SiC MOSFET has many benefits, such as higher breakdown voltage, faster action speed and better thermal conductivity. These advantages enable the SiC MOSFET to operate at higher switching frequencies, while, as the switching frequency increases, the turn-on loss accounts for most of the loss. This characteristic severely limits the applications of the SiC MOSFET at higher switching frequencies. Accordingly, an SRD-type drive circuit for a SiC MOSFET is proposed in this paper. The proposed SRD-type drive circuit can suppress the turn-on oscillation of a non-Kelvin packaged SiC MOSFET to ensure that the SiC MOSFET can work at a faster turn-on speed with a lower turn-on loss. In this paper, the basic principle of the proposed SRD-type drive circuit is analyzed, and a double pulse platform is established. For the purpose of proof-testing the performance of the presented SRD-type drive circuit, comparisons and experimental verifications between the traditional gate driver and the proposed SRD-type drive circuit were conducted. Our experimental results finally demonstrate the feasibility and effectiveness of the proposed SRD-type drive circuit.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022091
Author(s):  
Peifei Wu ◽  
Zechen Du ◽  
Fei Yang ◽  
Tao Zhu ◽  
Hao Wu ◽  
...  

Abstract According to the abnormal curve of opening characteristics in the process of double pulse test, the failure of 6.5kV/100A SiC module is judged, and it is preliminarily concluded that the gate of the module is damaged; The failure of the module is located by means of module anatomy, static characteristics test and chip screening test. It is concluded that the failure of the module is caused by the abnormality of two SiC MOSFET chips in the module; The damage of the chip was located by using stereomicroscope, OBIRCH, SEM and other equipment, and the root cause of MOSFET failure was studied by stripping anatomy. The preparation process of the gate and passivation strip on the MOSFET was poor, and the introduction of defects led to the breakdown of the gate unable to withstand high voltage.


2019 ◽  
Vol 963 ◽  
pp. 797-800 ◽  
Author(s):  
Ajit Kanale ◽  
Ki Jeong Han ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


2011 ◽  
Vol 11 (02) ◽  
pp. 215-236 ◽  
Author(s):  
MATTEO BROGGI ◽  
ADRIANO CALVI ◽  
GERHART I. SCHUËLLER

Cylindrical shells under axial compression are susceptible to buckling and hence require the development of enhanced underlying mathematical models in order to accurately predict the buckling load. Imperfections of the geometry of the cylinders may cause a drastic decrease of the buckling load and give rise to the need of advanced techniques in order to consider these imperfections in a buckling analysis. A deterministic buckling analysis is based on the use of the so-called knockdown factors, which specifies the reduction of the buckling load of the perfect shell in order to account for the inherent uncertainties in the geometry. In this paper, it is shown that these knockdown factors are overly conservative and that the fields of probability and statistics provide a mathematical vehicle for realistically modeling the imperfections. Furthermore, the influence of different types of imperfection on the buckling load are examined and validated with experimental results.


2002 ◽  
Vol 124 (3) ◽  
pp. 566-570 ◽  
Author(s):  
R. L. Fittro ◽  
C. R. Knospe

Many important industrial problems in the control of rotating machinery with active magnetic bearings concern the minimization of the rotor vibration response to poorly characterized disturbances at a single or several shaft locations, these typically not corresponding to those of a sensor or actuator. Herein, we examine experimental results of a multivariable controller obtained via μ synthesis with a laboratory test rig. These indicate that a significant improvement in performance can be obtained with a multivariable μ controller over that achieved with an optimal decentralized PD controller.


1999 ◽  
Vol 122 (4) ◽  
pp. 323-327
Author(s):  
G. Refai-Ahmed ◽  
M. M. Yovanovich

A numerical and experimental study of conduction heat transfer from low power magnetic components with gull wing leads was conducted to determine the effects of distributing the power loss between the core, the winding and the thermal underfill on the thermal resistance. The numerical study was conducted in the power loss ratio range of 0.5⩽PR⩽1.0, where the only active power loss was from the winding at PR=1. In addition, the effect of the thermal underfill material between the substrate and the lower surface of the magnetic package on the thermal performance of the magnetic device was also examined. For comparison, a test was conducted on a magnetic component at PR=1, without thermal underfill. This comparison revealed good agreement between the numerical and experimental results. Finally, a general model was proposed for conduction heat transfer from the surface mount power magnetic packages. The agreement between the model and the experimental results was within 8 percent. [S1043-7398(00)00704-0]


2015 ◽  
Vol 762 ◽  
pp. 55-60
Author(s):  
Georgia Cezara Avram ◽  
Florin Adrian Nicolescu ◽  
Radu Constantin Parpală ◽  
Constantin Dumitrascu

This paper presents the works carried out by the authors in the field of structural and functional optimization of industrial robot's numerically controlled (NC) axes. The study includes the results obtained in the research stage of the experimental measurements performed to evaluate the electrical servomotor's thermal behavior using a thermal (infrared) imaging camera. The analyzed servomotor is a brushless servomotor integrated in an experimental stand for linear motion NC axis experimental research, existing in the MMS department from EMTS faculty. Supplementary to the driving servomotor, the experimental stand includes a belt drive transmission, a ball screw - bearings assembly and a driven element guided by ball rail system. This experimental research phase is part of the doctoral thesis of first author and was conducted in order to validate the mathematical models developed in the PhD thesis. Thus, experimental results presented in the paper have been used to validate first mathematical models for electric motor's preliminary selection and checking, (performed by determining the total reflected inertia of the mechanical system on motor shaft level) as well as the mathematical models for final selection and checking (by evaluating the servomotor's thermal energy dissipation, and servomotor's internal and external maximum operating temperature). Second, the experimental results have been used to validate the assisted simulation for structural and functional optimization of industrial robot's NC axes based on both servomotor and drive's thermal behavior analysis, performed in the thesis by means of a dedicated commercial software package.


Sign in / Sign up

Export Citation Format

Share Document