Fast thermal simulations of vertically integrated circuits (3D ICs) including thermal vias

Author(s):  
Amirkoushyar Ziabari ◽  
Ali Shakouri
2019 ◽  
Vol 2019 (1) ◽  
pp. 000268-000273
Author(s):  
Naoya Watanabe ◽  
Yuuki Araga ◽  
Haruo Shimamoto ◽  
Katsuya Kikuchi ◽  
Makoto Nagata

Abstract In this study, we developed backside buried metal (BBM) layer technology for three-dimensional integrated circuits (3D-ICs). In this technology, a BBM layer for global power routing is introduced in the large vacant area on the backside of each chip and is parallelly connected with the frontside routing of the chip. The resistances of the power supply (VDD) and ground (VSS) lines consequently decrease. In addition, the BBM structure acts as a decoupling capacitor because it is buried in the Si substrate and has metal–insulator–silicon structure. Therefore, the impedance of power delivery network can be reduced by introducing the BBM layer. The fabrication process of the BBM layer for 3D-ICs was simple and compatible with the via-last through-silicon via (TSV) process. With this process, it was possible to fabricate the BBM layer consisting of electroplated Cu (thickness: approximately 10 μm) buried in the backside of the CMOS chip (thickness: 43 μm), which was connected with the frontside routing of the chip using 9 μm-diameter TSVs.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000862-000867
Author(s):  
Masaru Morita ◽  
Toshiya Akamatsu ◽  
Nobuhiro Imaizumi ◽  
Seiki Sakuyama

As demands accelerate for high density, high speed transmission and low power integrated circuits, 3D-ICs with through-silicon via (TSV) is pursued. In the structure of 3D-ICs, the first die is attached to the second die with micro bump, and the second die is attached to the circuit substrate with a C4 solder bump. The electrode structure of the second die is Cu/Ni UBM. The stress of the Ni-B layer is less than that of the Ni-P layer, and the Ni-B layer can suppress stress and die warpage. The purposes of our study are to clarify the difference in the barrier properties of the Ni-B UBM and Ni-P under bump metal (UBM) and the relevance of the barrier properties of Ni UBM and intermetallic compound (IMC) growth. It was found that an electroless Ni-B plating layer is superior to a Ni-P plating layer for UBM in liquid phase diffusion and in solid phase diffusion, and that a segregated B layer is formed under the IMC layer of a Ni-B land due to reflow soldering. It was estimated that this B layer plays the role of being a barrier layer for solder diffusion.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2217
Author(s):  
Piotr Zając

Integrated microchannel cooling is a very promising concept for thermal management of 3D ICs, because it offers much higher cooling performance than conventional forced-air convection. The thermo-fluidic simulations of such chips are usually performed using a computational fluid dynamics (CFD) approach. However, due to the complexity of the fluid flow modelling, such simulations are typically very long and faster models are therefore considered. This paper demonstrates the advantages of TIMiTIC—a compact thermal simulator for chips with liquid cooling—and shows its practical usefulness in design space exploration of 3D ICs with integrated microchannels. Moreover, thermal simulations of a 3D processor model using the proposed tool are used to estimate the optimal power dissipation profile in the chip and to prove that such an optimal profile allows for a very significant (more than 10 °C) peak temperature reduction. Finally, a custom correlation metric is introduced which allows the comparison of the power distribution profiles in terms of the peak chip temperature that they produce. Statistical analysis of the simulation results demonstrates that this metric is very accurate and can be used for example in thermal-aware task scheduling or dynamic voltage and frequency scaling (DVFS) algorithms.


2019 ◽  
Vol 16 (10) ◽  
pp. 909-916
Author(s):  
Jin-Hong Park ◽  
Munehiro Tada ◽  
Hyun-Yong Yu ◽  
Duygu Kuzum ◽  
Yeul Na ◽  
...  

Author(s):  
Je-Hyoung Park ◽  
Ali Shakouri ◽  
Sung-Mo Kang

CMOS VLSI technology has been facing various technical challenges as the feature sizes scale down. To overcome the challenges imposed by the shrink of the conventional on-chip interconnect system in IC chips, alternative interconnect technologies are being developed: one of them is three dimensional chips (3D ICs). Even though 3D IC technology is a promising solution for interconnect bottlenecks, thermal issues can be exacerbated. Thermal-aware design and optimization will be more critical in 3D IC technology than conventional planar IC technology, and hence accurate temperature profiles of each active layer will become very important. In 3D ICs, temperature profile of one layer depends not only on its own power dissipation but also on the heat transferred from other layers. Thus, thermal considerations for 3D ICs need to be done in a holistic manner even if each layer can be designed and fabricated individually. Conventional grid-based temperature computation methods are accurate but are computationally expensive, especially for 3D ICs. To increase computational efficiency, we developed a matrix convolution technique, called Power Blurring (PB) for 3D ICs. The temperature resulting from any arbitrary power dissipation in each layer of the 3D chip can be computed quickly. The PB method has been validated against commercial FEA software, ANSYS. Our method yields good results with maximum error less than 2% for various case studies and reduces the computation time by a factor of ∼ 60. The additional advantage is the possibility to evaluate different power dissipation profiles without the need to re-mesh the whole 3D chip structure.


Author(s):  
Ashok Raman ◽  
Marek Turowski ◽  
Monte Mar

This paper presents full-chip scale detailed thermal simulations of three-dimensional (3D) integrated circuit (IC) stacks. The inter-layer dielectric (ILD) and inter-metal dielectric (IMD) materials inside 3D IC stacks may cause extensive localized heating. The influence of multiple layers of dielectrics on heat trapping inside the 3D stack is analyzed. Different methods to minimize such localized heating are studied. It is shown that the use of thermal vias is very effective in heat dissipation from the hot spots. Comparisons are made between several 3D IC configurations to verify these conclusions.


Sign in / Sign up

Export Citation Format

Share Document