Gate Dielectric Leakage Reduction in Hard-Mask Defined and Dry-Etch Patterned Organic TFTs devices

2021 ◽  
pp. 1-1
Author(s):  
Jian-Jie Chen ◽  
Ting-Chang Chang ◽  
Yang-Hao Hung ◽  
Yu-Zhe Zheng ◽  
Chuan-Wei Kuo ◽  
...  
2012 ◽  
Vol 195 ◽  
pp. 143-145 ◽  
Author(s):  
Emanuel I. Cooper ◽  
Rekha Rajaram ◽  
Makonnen Payne ◽  
Steven Lippy

Titanium nitride (TiN) is widely used as a hard mask film protecting the inter-level dielectric (ILD) before metal or plating seed layer deposition steps. It is common practice to use a wet etch in order to remove residues formed during the ILD dry-etch step, and at the same time to remove some or all of the exposed TiN. From its thermochemical properties, it might be predicted that wet etching of TiN should be easy, since it is quite unstable with respect to both plain and oxidative hydrolysis. For example, in acidic solutions at 25°C [1, :


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1374
Author(s):  
Zheng Jiang ◽  
Hao Zhu ◽  
Qingqing Sun

Amorphous carbon hard mask (ACHM) films are widely used as etching hard masks in 3D-NAND flash memory, which has put forward higher requirements in the film deposition rate, film transparency, uniformity, and selective etching. In this work, the ACHM film processing is engineered and optimized by comparatively studying acetylene (C2H2) and propylene (C3H6) as carbon sources at the different temperatures of 300 °C, 350 °C and 400 °C. By increasing the deposition temperature, the deposition rate, non-uniformity, and dry etch rate of ACHM are improved at the penalty of a slightly increased extinction coefficient of the film, due to lower incorporation of hydrocarbon reactants absorbed into film at higher temperatures. However, the Fourier transformation infrared (FTIR) spectrum intensity is decreased with the increase of the deposition temperature. The lower dry etch rate of ACHM is achieved by using C3H6 as a carbon source deposited at 400 °C. The best dry etch selective ratio values are also achieved with 10.9 and 9.5 for SiO2 and SiN, respectively. These experimental results can be very promising in the advancement of etching process in 3D-NAND applications.


2001 ◽  
Vol 55 (1-4) ◽  
pp. 277-283 ◽  
Author(s):  
R.A. Donaton ◽  
B. Coenegrachts ◽  
M. Maenhoudt ◽  
I. Pollentier ◽  
H. Struyf ◽  
...  

2011 ◽  
Vol 519 (20) ◽  
pp. 6683-6687 ◽  
Author(s):  
Seungmoo Lee ◽  
Jaihyung Won ◽  
Jongsik Choi ◽  
Jihun Park ◽  
Yeonhong Jee ◽  
...  

1988 ◽  
Vol 49 (C4) ◽  
pp. C4-421-C4-424 ◽  
Author(s):  
A. STRABONI ◽  
M. BERENGUER ◽  
B. VUILLERMOZ ◽  
P. DEBENEST ◽  
A. VERNA ◽  
...  

2002 ◽  
Vol 716 ◽  
Author(s):  
Parag C. Waghmare ◽  
Samadhan B. Patil ◽  
Rajiv O. Dusane ◽  
V.Ramgopal Rao

AbstractTo extend the scaling limit of thermal SiO2, in the ultra thin regime when the direct tunneling current becomes significant, members of our group embarked on a program to explore the potential of silicon nitride as an alternative gate dielectric. Silicon nitride can be deposited using several CVD methods and its properties significantly depend on the method of deposition. Although these CVD methods can give good physical properties, the electrical properties of devices made with CVD silicon nitride show very poor performance related to very poor interface, poor stability, presence of large quantity of bulk traps and high gate leakage current. We have employed the rather newly developed Hot Wire Chemical Vapor Deposition (HWCVD) technique to develop the a:SiN:H material. From the results of large number of optimization experiments we propose the atomic hydrogen of the substrate surface prior to deposition to improve the quality of gate dielectric. Our preliminary results of these efforts show a five times improvement in the fixed charges and interface state density.


2002 ◽  
Vol 716 ◽  
Author(s):  
You-Seok Suh ◽  
Greg Heuss ◽  
Jae-Hoon Lee ◽  
Veena Misra

AbstractIn this work, we report the effects of nitrogen on electrical and structural properties in TaSixNy /SiO2/p-Si MOS capacitors. TaSixNy films with various compositions were deposited by reactive sputtering of TaSi2 or by co-sputtering of Ta and Si targets in argon and nitrogen ambient. TaSixNy films were characterized by Rutherford backscattering spectroscopy and Auger electron spectroscopy. It was found that the workfunction of TaSixNy (Si>Ta) with varying N contents ranges from 4.2 to 4.3 eV. Cross-sectional transmission electron microscopy shows no indication of interfacial reaction or crystallization in TaSixNy on SiO2, resulting in no significant increase of leakage current in the capacitor during annealing. It is believed that nitrogen retards reaction rates and improves the chemical-thermal stability of the gate-dielectric interface and oxygen diffusion barrier properties.


2003 ◽  
Vol 765 ◽  
Author(s):  
S. Van Elshocht ◽  
R. Carter ◽  
M. Caymax ◽  
M. Claes ◽  
T. Conard ◽  
...  

AbstractBecause of aggressive downscaling to increase transistor performance, the physical thickness of the SiO2 gate dielectric is rapidly approaching the limit where it will only consist of a few atomic layers. As a consequence, this will result in very high leakage currents due to direct tunneling. To allow further scaling, materials with a k-value higher than SiO2 (“high-k materials”) are explored, such that the thickness of the dielectric can be increased without degrading performance.Based on our experimental results, we discuss the potential of MOCVD-deposited HfO2 to scale to (sub)-1-nm EOTs (Equivalent Oxide Thickness). A primary concern is the interfacial layer that is formed between the Si and the HfO2, during the MOCVD deposition process, for both H-passivated and SiO2-like starting surfaces. This interfacial layer will, because of its lower k-value, significantly contribute to the EOT and reduce the benefit of the high-k material. In addition, we have experienced serious issues integrating HfO2 with a polySi gate electrode at the top interface depending on the process conditions of polySi deposition and activation anneal used. Furthermore, we have determined, based on a thickness series, the k-value for HfO2 deposited at various temperatures and found that the k-value of the HfO2 depends upon the gate electrode deposited on top (polySi or TiN).Based on our observations, the combination of MOCVD HfO2 with a polySi gate electrode will not be able to scale below the 1-nm EOT marker. The use of a metal gate however, does show promise to scale down to very low EOT values.


Sign in / Sign up

Export Citation Format

Share Document