scholarly journals Nonrigid Optical Flow Ground Truth for Real-World Scenes With Time-Varying Shading Effects

2017 ◽  
Vol 2 (1) ◽  
pp. 231-238 ◽  
Author(s):  
Wenbin Li ◽  
Darren Cosker ◽  
Zhihan Lv ◽  
Matthew Brown
Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 900
Author(s):  
Hanseob Kim ◽  
Taehyung Kim ◽  
Myungho Lee ◽  
Gerard Jounghyun Kim ◽  
Jae-In Hwang

Augmented reality (AR) scenes often inadvertently contain real world objects that are not relevant to the main AR content, such as arbitrary passersby on the street. We refer to these real-world objects as content-irrelevant real objects (CIROs). CIROs may distract users from focusing on the AR content and bring about perceptual issues (e.g., depth distortion or physicality conflict). In a prior work, we carried out a comparative experiment investigating the effects on user perception of the AR content by the degree of the visual diminishment of such a CIRO. Our findings revealed that the diminished representation had positive impacts on human perception, such as reducing the distraction and increasing the presence of the AR objects in the real environment. However, in that work, the ground truth test was staged with perfect and artifact-free diminishment. In this work, we applied an actual real-time object diminishment algorithm on the handheld AR platform, which cannot be completely artifact-free in practice, and evaluated its performance both objectively and subjectively. We found that the imperfect diminishment and visual artifacts can negatively affect the subjective user experience.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sakthi Kumar Arul Prakash ◽  
Conrad Tucker

AbstractThis work investigates the ability to classify misinformation in online social media networks in a manner that avoids the need for ground truth labels. Rather than approach the classification problem as a task for humans or machine learning algorithms, this work leverages user–user and user–media (i.e.,media likes) interactions to infer the type of information (fake vs. authentic) being spread, without needing to know the actual details of the information itself. To study the inception and evolution of user–user and user–media interactions over time, we create an experimental platform that mimics the functionality of real-world social media networks. We develop a graphical model that considers the evolution of this network topology to model the uncertainty (entropy) propagation when fake and authentic media disseminates across the network. The creation of a real-world social media network enables a wide range of hypotheses to be tested pertaining to users, their interactions with other users, and with media content. The discovery that the entropy of user–user and user–media interactions approximate fake and authentic media likes, enables us to classify fake media in an unsupervised learning manner.


Author(s):  
Marco Mammarella ◽  
Giampiero Campa ◽  
Mario L. Fravolini ◽  
Marcello R. Napolitano

2021 ◽  
pp. 1-12
Author(s):  
Lauro Reyes-Cocoletzi ◽  
Ivan Olmos-Pineda ◽  
J. Arturo Olvera-Lopez

The cornerstone to achieve the development of autonomous ground driving with the lowest possible risk of collision in real traffic environments is the movement estimation obstacle. Predicting trajectories of multiple obstacles in dynamic traffic scenarios is a major challenge, especially when different types of obstacles such as vehicles and pedestrians are involved. According to the issues mentioned, in this work a novel method based on Bayesian dynamic networks is proposed to infer the paths of interest objects (IO). Environmental information is obtained through stereo video, the direction vectors of multiple obstacles are computed and the trajectories with the highest probability of occurrence and the possibility of collision are highlighted. The proposed approach was evaluated using test environments considering different road layouts and multiple obstacles in real-world traffic scenarios. A comparison of the results obtained against the ground truth of the paths taken by each detected IO is performed. According to experimental results, the proposed method obtains a prediction rate of 75% for the change of direction taking into consideration the risk of collision. The importance of the proposal is that it does not obviate the risk of collision in contrast with related work.


Author(s):  
Hao Zhang ◽  
Liangxiao Jiang ◽  
Wenqiang Xu

Crowdsourcing services provide a fast, efficient, and cost-effective means of obtaining large labeled data for supervised learning. Ground truth inference, also called label integration, designs proper aggregation strategies to infer the unknown true label of each instance from the multiple noisy label set provided by ordinary crowd workers. However, to the best of our knowledge, nearly all existing label integration methods focus solely on the multiple noisy label set itself of the individual instance while totally ignoring the intercorrelation among multiple noisy label sets of different instances. To solve this problem, a multiple noisy label distribution propagation (MNLDP) method is proposed in this study. MNLDP first transforms the multiple noisy label set of each instance into its multiple noisy label distribution and then propagates its multiple noisy label distribution to its nearest neighbors. Consequently, each instance absorbs a fraction of the multiple noisy label distributions from its nearest neighbors and yet simultaneously maintains a fraction of its own original multiple noisy label distribution. Promising experimental results on simulated and real-world datasets validate the effectiveness of our proposed method.


Author(s):  
V. V. Kniaz ◽  
V. A. Mizginov ◽  
L. V. Grodzitkiy ◽  
N. A. Fomin ◽  
V. A. Knyaz

Abstract. Structured light scanners are intensively exploited in various applications such as non-destructive quality control at an assembly line, optical metrology, and cultural heritage documentation. While more than 20 companies develop commercially available structured light scanners, structured light technology accuracy has limitations for fast systems. Model surface discrepancies often present if the texture of the object has severe changes in brightness or reflective properties of its texture. The primary source of such discrepancies is errors in the stereo matching caused by complex surface texture. These errors result in ridge-like structures on the surface of the reconstructed 3D model. This paper is focused on the development of a deep neural network LineMatchGAN for error reduction in 3D models produced by a structured light scanner. We use the pix2pix model as a starting point for our research. The aim of our LineMatchGAN is a refinement of the rough optical flow A and generation of an error-free optical flow B̂. We collected a dataset (which we term ZebraScan) consisting of 500 samples to train our LineMatchGAN model. Each sample includes image sequences (Sl, Sr), ground-truth optical flow B and a ground-truth 3D model. We evaluate our LineMatchGAN on a test split of our ZebraScan dataset that includes 50 samples. The evaluation proves that our LineMatchGAN improves the stereo matching accuracy (optical flow end point error, EPE) from 0.05 pixels to 0.01 pixels.


2014 ◽  
Vol 33 (14) ◽  
pp. 2480-2520 ◽  
Author(s):  
Romain Neugebauer ◽  
Julie A. Schmittdiel ◽  
Mark J. van der Laan

2021 ◽  
Vol 14 (6) ◽  
pp. 997-1005
Author(s):  
Sandeep Tata ◽  
Navneet Potti ◽  
James B. Wendt ◽  
Lauro Beltrão Costa ◽  
Marc Najork ◽  
...  

Extracting structured information from templatic documents is an important problem with the potential to automate many real-world business workflows such as payment, procurement, and payroll. The core challenge is that such documents can be laid out in virtually infinitely different ways. A good solution to this problem is one that generalizes well not only to known templates such as invoices from a known vendor, but also to unseen ones. We developed a system called Glean to tackle this problem. Given a target schema for a document type and some labeled documents of that type, Glean uses machine learning to automatically extract structured information from other documents of that type. In this paper, we describe the overall architecture of Glean, and discuss three key data management challenges : 1) managing the quality of ground truth data, 2) generating training data for the machine learning model using labeled documents, and 3) building tools that help a developer rapidly build and improve a model for a given document type. Through empirical studies on a real-world dataset, we show that these data management techniques allow us to train a model that is over 5 F1 points better than the exact same model architecture without the techniques we describe. We argue that for such information-extraction problems, designing abstractions that carefully manage the training data is at least as important as choosing a good model architecture.


Sign in / Sign up

Export Citation Format

Share Document