Effects of dead time and semiconductor device voltage drops of output voltage of multilevel converters

Author(s):  
Ivan Mrcela ◽  
Viktor Sunde ◽  
Marinko Kovacic
Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 698 ◽  
Author(s):  
Chen Wei ◽  
Xibo Yuan ◽  
Juan Zhou ◽  
Kangan Wang ◽  
Yonglei Zhang ◽  
...  

In low and medium voltage power conversion systems, multilevel converters are becoming more and more attractive due to improved power density. However, the complexity of topology and control is a big challenge for the application of multilevel converters. In this paper, a four-level (4L) hybrid flying capacitor (FC) T-type converter has been researched in detail. The topological advantage of the converter is displayed in comparison to existing four-level converters. According to the feature of the topology, the operating status has been analyzed and the reason for the voltage jump is researched in detail during the dead-time period. A strategy to reduce voltage jump by adjusting the switching states has be presented. The FC voltages can be balanced by selecting the appropriate switching states. The relationships between the fluctuations of FC voltages and the modulation index and power factor (PF) have been analyzed by simulation results. The performance of the 4L converter has been investigated in MATLAB/Simulink as well as on a down-scaled laboratory prototype.


Author(s):  
I.V. Volkov ◽  
◽  
V.V. Golubev ◽  
V.I. Zozulev ◽  
◽  
...  

The article considers the properties of the most commonly used two-and multilevel inverter topologies used in systems for converting electricity from several primary power sources into the required high-quality output voltage for low-voltage networks and high-voltage consumers. However, a common disadvantage of most known multilevel converters is the increasing complexity of power structures, an increase in the number of primary power sources, power elements, and the cost of devices as the number of their voltage levels increases. Two schemes of alternative three-level autonomous voltage inverters with a high-frequency autotransformer with a midpoint and an example of constructing their digital control system are proposed. The analysis of their work on PSpice models in the OrCAD design system is carried out. The possibility of obtaining six voltage sublevels with fewer power elements and increased output voltage quality is shown, compared to the corresponding cascade multilevel inverters. The advantages and applications of autotransformer bridge voltage inverters in terms of energy and functionality compared to well-known multilevel inverters are presented. Ref. 8, fig. 7.


Author(s):  
R. Birundha ◽  
Dr. P. Maruthapandi

A new single switch solar powered high gain step-up DC-DC converter is proposed for plug-in hybrid battery charger in Electric vehicle (EV). The proposed topology utilizes a L2C3D2network to obtain high voltage gain and reduce the voltage stress on the power switch. Additionally, the proposed converter has a universal input voltage in order to suit the soft output characteristics of the fuel cell. The fuel cell has a relatively low output voltage and high current, and it has soft output characteristics as its output voltage drops as the output current increases. Therefore, the fuel cell cannot be directly interfaced to the dc-link bus (400V) of the inverter inside the EV. This dc-dc converter has a universal input voltage feature with wide voltage gain range to suit the soft output characteristics of the fuel cell. Additionally, this dc-dc converter has to have low input current ripple to prolong the life time of the fuel /solar cell, and a common ground between its input and output ports to avoid additional EMI and maintenance safety problem. This control strategy is modelled and simulated using MATLAB -Simulink. A proto type experimental has been fabricated and tested. The experimental analysis was done and the results are in line with the simulation results.


Author(s):  
DECY NATALIANA ◽  
NANDANG TARYANA ◽  
EGI RIANDITA

ABSTRAKMetode yang digunakan untuk mengetahui volume cairan Infus adalah dengan cara mendeteksi tetesan yang berada pada chamber Infus. Tetesan dideteksi oleh sensor cahaya yaitu LED infra merah dan photodioda. Sinyal tegangan dari sensor dikondisikan dengan IC komparator LM339 . Mikrokontroler ATmega 8535 digunakan sebagai pengolah data  I/O dari komparator sehingga informasi dari parameter  yang dimonitor dapat ditampilkan pada LED dan LCD serta bunyi buzzer. Tegangan keluaran sensor infra merah saat mendeteksi tetesan adalah sebesar 1,02 V sedangkan saat tidak mendeteksi tetesan tegangan keluaran sebesar 180 mV. Parameter yang dapat dideteksi dari alat ini diantaranya jumlah tetesan per menit dengan maksimal jumlah tetes / menit yang dideteksi sebesar 255 tetes, peringatan bila tetesan tidak terdeteksi selama 10 detik dan peringatan bila cairan Infus akan habis (± 50 ml). Suara yang dihasilkan buzzer masih terdengar jelas dan tidak berbahaya bagi pendengaran perawat berdasarkan nilai ambang batas tingkat kebisingan meskipun keadaan di ruangan perawat dalam kondisi ramai.Kata kunci: Infus set, intravena, photodioda, infra merah, mikrokontroler ATmega 8535, Infus. ABSTRACTThe method used to know the volume of Infusion fluid is detecting droplets that are on Infusion chamber. The droplets are detected by the light sensors is infrared LED and  photodiode. The voltage signal from the sensor is conditioned by the digital comparator IC LM339. ATmega microcontroller 8535 is used as a data processor of the comparator output so that information from the monitored parameters can be displayed on the LCD and LED and buzzer flame. The output voltage when infrared sensors detect a drop is 1.02 V, while sensor does not detect a drop the output voltage drops is 180 mV. Parameters that can be detected from these tool include the number of drops per minute with a maximum number of drops / min was detected at 255 drops, a warning when the droplets are not detected for 10 seconds and a warning when Infuse fluids will run out (± 50 ml). Buzzer’s sound still clearly audible and not dangerous for nurse’s hearing based on noise level threshold value though the situation in the nurse’s room in crowded conditions.Keywords: Infusion sets, intravenous, photodioda, infra red, microcontroller, Infusion.


Author(s):  
Laith M. Akram Alsaqal ◽  
Ahmed M. T. Ibraheem Alnaib ◽  
Omar Talal Mahmood

There are various types of Multilevel Converters (MCs) in addition to various types of modulation techniques for these types of MCs; the challenges in selecting the best one of them with regard to the amount of the required of components, and its harmonics content. So, a comparison study among these types has been done in this paper. For comparison study, the simulation of seven level of two popular topologies of MCs: Neutral Point Clamped (NPC) converter, and Cascaded-MCs were carried out with Matlab/Simulink software program. These converters are used to drive a single phase capacitor start motor drive. Multicarrier modulation control techniques are used for controlling the MCs; these techniques involve two main type: Level Shifted Carrier (LSC), and Phase Shifted Carrier (PSC). The comparison is made with respect to the performance factors as, the amplitude of  the Total Harmonic Distortion (THD), and the DC-bus utilization performance which measured by Root Mean Square of the output voltage Vrms at variable modulation indices and variable carrier frequency. Based on simulation results it's found, that the cascaded-MC with PSC modulation method gives best results, in addition to the Alternative Phase Opposition Disposition APOD-LSC modulation technique (with even number of modulation frequency) generate the output voltage with a lower harmonic content compared with the other techniques.


Sign in / Sign up

Export Citation Format

Share Document