Transmission Characteristics of 43 Gb/s Single-Polarization and Dual-Polarization RZ-DQPSK Signals with Co-propagating 11.1 Gb/s NRZ Channels over NZ-DSF

Author(s):  
Masahiro Yuki ◽  
Takeshi Hoshida ◽  
Takahito Tanimura ◽  
Shoichiro Oda ◽  
Kentaro Nakamura ◽  
...  
2019 ◽  
Vol 11 (12) ◽  
pp. 1436 ◽  
Author(s):  
Skripniková ◽  
Řezáčová

The comparative analysis of radar-based hail detection methods presented here, uses C-band polarimetric radar data from Czech territory for 5 stormy days in May and June 2016. The 27 hail events were selected from hail reports of the European Severe Weather Database (ESWD) along with 21 heavy rain events. The hail detection results compared in this study were obtained using a criterion, which is based on single-polarization radar data and a technique, which uses dual-polarization radar data. Both techniques successfully detected large hail events in a similar way and showed a strong agreement. The hail detection, as applied to heavy rain events, indicated a weak enhancement of the number of false detected hail pixels via the dual-polarization hydrometeor classification. We also examined the performance of hail size detection from radar data using both single- and dual-polarization methods. Both the methods recognized events with large hail but could not select the reported events with maximum hail size (diameter above 4 cm).


2017 ◽  
Vol 18 (4) ◽  
pp. 917-937 ◽  
Author(s):  
Haonan Chen ◽  
V. Chandrasekar ◽  
Renzo Bechini

Abstract Compared to traditional single-polarization radar, dual-polarization radar has a number of advantages for quantitative precipitation estimation because more information about the drop size distribution and hydrometeor type can be gleaned. In this paper, an improved dual-polarization rainfall methodology is proposed, which is driven by a region-based hydrometeor classification mechanism. The objective of this study is to incorporate the spatial coherence and self-aggregation of dual-polarization observables in hydrometeor classification and to produce robust rainfall estimates for operational applications. The S-band dual-polarization data collected from the NASA Polarimetric (NPOL) radar during the GPM Iowa Flood Studies (IFloodS) ground validation field campaign are used to demonstrate and evaluate the proposed rainfall algorithm. Results show that the improved rainfall method provides better performance than a few single- and dual-polarization algorithms in previous studies. This paper also investigates the impact of radar beam broadening on various rainfall algorithms. It is found that the radar-based rainfall products are less correlated with ground disdrometer measurements as the distance from the radar increases.


2018 ◽  
Vol 10 (6) ◽  
pp. 949 ◽  
Author(s):  
Katherine Irwin ◽  
Alexander Braun ◽  
Georgia Fotopoulos ◽  
Achim Roth ◽  
Birgit Wessel

2013 ◽  
Vol 28 (6) ◽  
pp. 1478-1497 ◽  
Author(s):  
Luciana K. Cunha ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Witold F. Krajewski

Abstract Dual-polarization radars are expected to provide better rainfall estimates than single-polarization radars because of their ability to characterize hydrometeor type. The goal of this study is to evaluate single- and dual-polarization radar rainfall fields based on two overlapping radars (Kansas City, Missouri, and Topeka, Kansas) and a dense rain gauge network in Kansas City. The study area is located at different distances from the two radars (23–72 km for Kansas City and 104–157 km for Topeka), allowing for the investigation of radar range effects. The temporal and spatial scales of radar rainfall uncertainty based on three significant rainfall events are also examined. It is concluded that the improvements in rainfall estimation achieved by polarimetric radars are not consistent for all events or radars. The nature of the improvement depends fundamentally on range-dependent sampling of the vertical structure of the storms and hydrometeor types. While polarimetric algorithms reduce range effects, they are not able to completely resolve issues associated with range-dependent sampling. Radar rainfall error is demonstrated to decrease as temporal and spatial scales increase. However, errors in the estimation of total storm accumulations based on polarimetric radars remain significant (up to 25%) for scales of approximately 650 km2.


2021 ◽  
Vol 12 (3) ◽  
pp. 175
Author(s):  
Ni Nyoman Pujianiki ◽  
I Nyoman Sudi Parwata ◽  
Takahiro Osawa

This study proposes a new simple procedure for extracting coastline from Synthetic Aperture Radar (SAR) images by utilizing a low-pass filter and edge detection algorithm. The low-pass filter is used to improve the histogram of the pixel value of the SAR image. It provides better distribution of pixel value and makes it easy to separate between sea and land surfaces. This study provides the processing steps using open-source software, i.e., SNAP SAR processor and QGIS application. This procedure has been tested using dual polarization Sentinel-1 (10x10 meters resolution) and single polarization ALOS-2 (3x3 meters resolution) dataset. The results show that using Sentinel-1 with dual polarization (VH) provides a better result than single polarization (VV). In the ALOS-2 case, only single polarization (HH) is available. However, even using only HH polarization, ALOS-2 provides a good result. In terms of resolution, ALOS-2 provides a better coastline than Sentinel-1 data due to ALOS-2 has better resolution. This procedure is expected to be helpful to detect coastline changes and for coastal area management.


2021 ◽  
Vol 23 (07) ◽  
pp. 1058-1067
Author(s):  
Vikas Kaushik ◽  
◽  
Himanshi Saini ◽  

The use of multiple carriers in Orthogonal Frequency Division Modulation (OFDM) makes it bandwidth-efficient and suitable for modern communication such as Long-Term Evolution (LTE), Digital Subscriber Line (DSL) internet access, optical fiber communication, digital television, audio broadcasting, etc. In this paper, four modulation formats by using Coherent Optical Orthogonal Frequency Division Modulations (CO-OFDM) have been analyzed. These are Single Port Dual Polarization (SP DP) 16 QAM, Single-Port Single Polarization (SP SP) 16 QAM, Dual Port Single Polarization (DP SP) QPSK 16-QAM, and Single Port Dual Polarization (SP DP) QPSK. Operation characteristics such as Bit Error Rate (BER) versus fiber-length and BER versus bit-rate have been examined. The range of fiber length used for this investigation is from 0 Km to 1000 Km with loop count equal to 2 and the range of bit rate of operation is from 20 Gbps to 200 Gbps. The present investigation helps in determining the relative suitability of CO-OFDM formats at various bit-rates of operation for different fiber lengths.


2014 ◽  
Vol 29 (3) ◽  
pp. 623-638 ◽  
Author(s):  
Patrick C. Kennedy ◽  
Steven A. Rutledge ◽  
Brenda Dolan ◽  
Eric Thaler

Abstract The issuance of timely warnings for the occurrence of severe-class hail (hailstone diameters of 2.5 cm or larger) remains an ongoing challenge for operational forecasters. This study examines the application of two remotely sensed data sources between 0100 and 0400 UTC 14 July 2011 when pulse-type severe thunderstorms occurred in the jurisdiction of the Denver/Boulder National Weather Service (NWS) Forecast Office in Colorado. First, a developing hailstorm was jointly observed by the dual-polarization Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) research radar and by the operational, single-polarization NWS radar at Denver/Front Range (KFTG). During the time period leading up to the issuance of the initial severe thunderstorm warning, the dual-polarization radar data near the 0 °C altitude contained a positive differential reflectivity ZDR column (indicating a strong updraft lofting supercooled raindrops above the freezing level). Correlation coefficient ρHV reductions to ~0.93, probably due to the presence of growing hailstones, were observed above the freezing level in portions of the developing >55-dBZ echo core. Second, data from the National Lightning Detection Network (NLDN), including the locations and polarity of cloud-to-ground (CG) discharges produced by several of the evening’s storms, were processed. Some association was found between the prevalence of positive CGs and storms that produced severe hail. The analyses indicate that the use of the dual-polarization data provided by the upgraded Weather Surveillance Radar-1988 Doppler (WSR-88D), in combination with the NLDN data stream, can assist operational forecasters in the real-time identification of thunderstorms that pose a severe hail threat.


2014 ◽  
Vol 7 (2) ◽  
pp. 537-552 ◽  
Author(s):  
M. Montopoli ◽  
G. Vulpiani ◽  
D. Cimini ◽  
E. Picciotti ◽  
F. S. Marzano

Abstract. The important role played by ground-based microwave weather radars for the monitoring of volcanic ash clouds has been recently demonstrated. The potential of microwaves from satellite passive and ground-based active sensors to estimate near-source volcanic ash cloud parameters has been also proposed, though with little investigation of their synergy and the role of the radar polarimetry. The goal of this work is to show the potentiality and drawbacks of the X-band dual polarization (DPX) radar measurements through the data acquired during the latest Grímsvötn volcanic eruptions that took place in May 2011 in Iceland. The analysis is enriched by the comparison between DPX data and the observations from the satellite Special Sensor Microwave Imager/Sounder (SSMIS) and a C-band single polarization (SPC) radar. SPC, DPX, and SSMIS instruments cover a large range of the microwave spectrum, operating respectively at 5.4, 3.2, and 0.16–1.6 cm wavelengths.


Sign in / Sign up

Export Citation Format

Share Document