Experimental results of attitude determination with high precision GNSS receivers

Author(s):  
Janis Kluga ◽  
Ansis Kluga ◽  
Ingus Mitrofanovs
2019 ◽  
Vol 131 ◽  
pp. 01057
Author(s):  
Youyi Gu ◽  
Li Wang ◽  
Fengzhuo Xiang ◽  
Wen Ouyang ◽  
Lixing Jiang

Outdoor baseline is the special length standard in the field of surveying and mapping, it can be used to verify the addition and multiplication constants of the total station and other photoelectric rangefinders. In order to ensure the authenticity, accuracy and reliability of verification results, conducting outdoor baseline traceability periodically is essential. At present, direct measurement by 24m invar tape or high precision electro-optical measurement is mainly used to achieve the traceability of outdoor baseline in China. Based on Shenyang baseline field, high precision rangefinder μ-base, 24m invar tape and high precision GNSS receivers are used for comparison experiments, and the experimental results are analyzed.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 741
Author(s):  
Yuseok Ban ◽  
Kyungjae Lee

Many researchers have suggested improving the retention of a user in the digital platform using a recommender system. Recent studies show that there are many potential ways to assist users to find interesting items, other than high-precision rating predictions. In this paper, we study how the diverse types of information suggested to a user can influence their behavior. The types have been divided into visual information, evaluative information, categorial information, and narrational information. Based on our experimental results, we analyze how different types of supplementary information affect the performance of a recommender in terms of encouraging users to click more items or spend more time in the digital platform.


2016 ◽  
Vol 10 (3) ◽  
Author(s):  
Wantong Chen

AbstractGNSS-based attitude determination technique is an important field of study, in which two schemes can be used to construct the actual system: the common clock scheme and the non-common clock scheme. Compared with the non-common clock scheme, the common clock scheme can strongly improve both the reliability and the accuracy. However, in order to gain these advantages, specific care must be taken in the implementation. The cares are thus discussed, based on the generating technique of carrier phase measurement in GNSS receivers. A qualitative assessment of potential phase bias contributes is also carried out. Possible technical difficulties are pointed out for the development of single-board multi-antenna GNSS attitude systems with a common clock.


2013 ◽  
Vol 300-301 ◽  
pp. 382-388
Author(s):  
Zhan Wei Xu ◽  
Gui Lin Zheng

A novel rain gauge based on acoustic self-calibration principle is proposed in the paper. Acoustic self-calibration principle can eliminate the uncertainty of the velocity of ultrasound and achieve accurate measurement of rainfall. The rain gauge not only overcomes the influence on the rainfall measurement under intensive rainfall conditions, but also improves the precision of rain gauge. Plenty of experiments have been done to validate the design. Both theoretical analysis and experimental results show the effectiveness of the rain gauge. A full description of the rain gauge and implementation are presented.


2001 ◽  
Author(s):  
Som Chattopadhyay

Abstract Positioning accuracy within the range of nanometers is required for high precision machining applications. The implementation of such a range is difficult through the slides because of (a) irregular nature of friction at the slider-guideway interface, and (b) complex motion characteristic at very low speeds. The complexity arises due to the local deformation at the interface prior to breakaway, which is known as microdynamics. In this work prior experimental results exhibiting microdynamics have been appraised, and mathematical model developed to understand this behavior.


2012 ◽  
Vol 116 (1178) ◽  
pp. 373-389
Author(s):  
Y. Jiao ◽  
J. Wang ◽  
X. Pan ◽  
H. Zhou

Abstract The satellite attitude determination approach based on the Extended Kalman Filter (EKF) has been widely used in many real applications. However, the accuracy of this method largely depends on the fitness of measurement model. We aim to analyse the influence of measurement errors to the accuracy of EKF based attitude determination approach in this paper. The measurement errors, which are divided into structural error and nonstructural error by their influences, are analysed in principle. In the setting of the combination of star sensors and gyros, according to the property of innovation, we employ the technique of correlation test to analyse the influences of different kinds of measurement errors. Experimental results demonstrate the effectiveness of our previous analysis.


2014 ◽  
Vol 4 (3) ◽  
pp. 1-13
Author(s):  
Khadoudja Ghanem

In this paper the authors propose a semantic approach to document categorization. The idea is to create for each category a semantic index (representative term vector) by performing a local Latent Semantic Analysis (LSA) followed by a clustering process. A second use of LSA (Global LSA) is adopted on a term-Class matrix in order to retrieve the class which is the most similar to the query (document to classify) in the same way where the LSA is used to retrieve documents which are the most similar to a query in Information Retrieval. The proposed system is evaluated on a popular dataset which is 20 Newsgroup corpus. Obtained results show the effectiveness of the method compared with those obtained with the classic KNN and SVM classifiers as well as with methods presented in the literature. Experimental results show that the new method has high precision and recall rates and classification accuracy is significantly improved.


2007 ◽  
Vol 264 (2-3) ◽  
pp. 110-121 ◽  
Author(s):  
S. George ◽  
K. Blaum ◽  
F. Herfurth ◽  
A. Herlert ◽  
M. Kretzschmar ◽  
...  

2013 ◽  
Vol 772 ◽  
pp. 455-460
Author(s):  
Jie Chun Chen ◽  
Shi Quan Ma ◽  
Li Ping Zhao

This paper discusses a low cost head-supported eye tracker. To measure the coordinates associated with a subjects gaze point fallen on a monitor, the subject places his head on a head support and keeps his head fixed. Meanwhile, a camera is used to capture images of the subjects left or right eye. The subjects gaze point fallen on a monitor can be determined according to the relative position of the pupil and glint in an eye image. This paper presents not only the principle of this eye tracker, but also the methods used to detect the pupil and glint in an eye image. At last, this paper presents some experimental results, and the experimental results show that the maximal average error of the experimental apparatus is 15 pixels or 0.4 in degrees.


2014 ◽  
Vol 511-512 ◽  
pp. 301-306
Author(s):  
Shou Bin Liu ◽  
Zhan Ping Li

The core component of profilometer is a stylus displacement measuring system, whose resolution reaches nanoscale. Since the stylus tip is very small, a variation on probing force has a great impact on the results of high-precision displacement measurements. In this paper, a special flat rectangular voice coil motor is designed to realize a constant probing force for the stylus displacement measuring system. Experimental results show the probing force can be adjusted from 5mg to 1000mg and the resolution can reach 5mg.


Sign in / Sign up

Export Citation Format

Share Document