A front-end filter with automatic center frequency tuning circuitry

Author(s):  
Y. Chang ◽  
J. Wills ◽  
J. Choma
1999 ◽  
Vol 82 (5) ◽  
pp. 2327-2345 ◽  
Author(s):  
Jagmeet S. Kanwal ◽  
Douglas C. Fitzpatrick ◽  
Nobuo Suga

Mustached bats, Pteronotus parnellii parnellii,emit echolocation pulses that consist of four harmonics with a fundamental consisting of a constant frequency (CF1-4) component followed by a short, frequency-modulated (FM1-4) component. During flight, the pulse fundamental frequency is systematically lowered by an amount proportional to the velocity of the bat relative to the background so that the Doppler-shifted echo CF2 is maintained within a narrowband centered at ∼61 kHz. In the primary auditory cortex, there is an expanded representation of 60.6- to 63.0-kHz frequencies in the “Doppler-shifted CF processing” (DSCF) area where neurons show sharp, level-tolerant frequency tuning. More than 80% of DSCF neurons are facilitated by specific frequency combinations of ∼25 kHz (BFlow) and ∼61 kHz (BFhigh). To examine the role of these neurons for fine frequency discrimination during echolocation, we measured the basic response parameters for facilitation to synthesized echolocation signals varied in frequency, intensity, and in their temporal structure. Excitatory response areas were determined by presenting single CF tones, facilitative curves were obtained by presenting paired CF tones. All neurons showing facilitation exhibit at least two facilitative response areas, one of broad spectral tuning to frequencies centered at BFlowcorresponding to a frequency in the lower half of the echolocation pulse FM1 sweep and another of sharp tuning to frequencies centered at BFhigh corresponding to the CF2 in the echo. Facilitative response areas for BFhigh are broadened by ∼0.38 kHz at both the best amplitude and 50 dB above threshold response and show lower thresholds compared with the single-tone excitatory BFhigh response areas. An increase in the sensitivity of DSCF neurons would lead to target detection from farther away and/or for smaller targets than previously estimated on the basis of single-tone responses to BFhigh. About 15% of DSCF neurons show oblique excitatory and facilitatory response areas at BFhigh so that the center frequency of the frequency-response function at any amplitude decreases with increasing stimulus amplitudes. DSCF neurons also have inhibitory response areas that either skirt or overlap both the excitatory and facilitatory response areas for BFhigh and sometimes for BFlow. Inhibition by a broad range of frequencies contributes to the observed sharpness of frequency tuning in these neurons. Recordings from orthogonal penetrations show that the best frequencies for facilitation as well as excitation do not change within a cortical column. There does not appear to be any systematic representation of facilitation ratios across the cortical surface of the DSCF area.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000826-000831 ◽  
Author(s):  
Shahrokh Saeedi ◽  
William S. Wilson ◽  
Tyler R. Ashley ◽  
Hjalti H. Sigmarsson ◽  
Juseop Lee

In this paper, we present an integrated capacitive sensing technique that can be used to achieve closed-loop feedback control of variable capacitors. The technique is well suited for diaphragm-based actuators that can be used to tune the center frequency of microwave reconfigurable filters. A commercially available capaci-tance-to-digital converter is used to measure the capacitance of a custom-made monitoring capacitor. This capacitor is completely external to the filter structure and does not contribute to any added losses. A tunable, second-order, bandpass filter –using substrate-integrated, evanescent-mode cavity resonators– is created to demonstrate the concept. The frequency tuning is achieved using piezoelectric actuators to displace a flexible copper diaphragm that forms the top part of the loading capacitor. The monitoring capacitor consists of a second cavity that is mounted above the actuator forming a second air-filled, metal-insulator-metal capacitor. There exists a direct relationship between the monitoring capacitance and the loading capacitance in the evanescent-mode cavity. Therefore, by tracking the monitoring capacitance the center frequency of the filter can be monitored, which allows for direct in-situ closed-loop control of the filter. An algorithm for the tuning operation is presented, which includes an automatic calibration technique to initialize the controller. The effectiveness and repeatability of the technique is evaluated as the filter is tuned from 3.3 GHz to 3.7 GHz. Having stable feedback control integrated with this type of evanescent-mode cavity filters, brings the technology one step closer to actual fielding.


2014 ◽  
Vol 926-930 ◽  
pp. 2503-2507
Author(s):  
Wen Kai Liu ◽  
Peng Wang ◽  
Jian Cui

RF front-end is an important part of the communication system. It realizes the functions such as low noise amplifier application, filtering and mixing, completes the conversion between the IF signal and the RF signal, and ensures effective communication system flexibility and versatility. In the paper, according to the superheterodyne structure, a receiver RF front-end has been designed. The total gain of the link circuit is more than 100 dB, with 50 dB AGC range, the center frequency is 750 MHz with 100MHz bandwidth, local oscillator (LO) signal with frequency 935MHz is generated by PLL and the stability is-82dBc/Hz@1KHz.


2009 ◽  
Vol 19 (4) ◽  
pp. 3683-3687 ◽  
Author(s):  
Huili Peng ◽  
Xubo Guo ◽  
Xiaoping Zhang ◽  
Bin Wei ◽  
Bisong Cao ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Rahul Yadav

This paper presents a spiral antenna design operating in the frequency range of 1–15 GHz having both selective notch bands and wideband response. The main feed arm of spiral antenna is configured as rectangular monopole of width quarter wavelength to achieve impedance matching with standard 50 Ω excitation. Frequency tuning in the design is achieved by placing varactor diode at an appropriate position along the spiral arms and in the ground plane. The design offers a peak gain of 3.4 dB (simulated) and 3 dB (measured). The unique frequency response of antenna makes its suitable to be used for front-end system of cognitive radio for sensing the spectrum in various modes.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 526
Author(s):  
Xiaotong Guan ◽  
Jiayi Zhang ◽  
Wenjie Fu ◽  
Dun Lu ◽  
Tongbin Yang ◽  
...  

Motivated by some emerging high-frequency applications, a high-power frequency-tunable sub-THz quasi-optical gyrotron cavity based on a confocal waveguide is designed in this paper. The frequency tuning characteristics of different approaches, including magnetic field tuning, mirror separation adjustment, and hybrid tuning, have been investigated by particle-in-cell (PIC) simulation. Results predict that it is possible to realize a smooth continuous frequency tuning band with an extraordinarily broad bandwidth of 41.55 GHz, corresponding to a relative bandwidth of 18.7% to the center frequency of 0.22 THz. The frequency tunability is provided by varying the separation distance between two mirrors and correspondingly adjusting the external magnetic field. During the frequency tuning, the output power remains higher than 20 kW, which corresponds to an interaction efficiency of 10%. Providing great advantages in terms of broad bandwidth, smooth tuning, and high power, this research may be conducive to the development of high-power frequency-tunable THz gyrotron oscillators.


Author(s):  
Keyur Mahant ◽  
Hiren Mewada

Aims : Substrate Integrated Waveguide (SIW) based bandpass filter is presented in this paper. Objectives: In the proposed design, bandpass response is achieved by combining SIW structure with elliptic shaped Defected Ground Structure (DGS) cells. Methods : Simulation of the proposed structure is carried out using commercial software Ansoft High Frequency Structure Simulator (HFSS), which is a three-dimensional frequency domain electromagnetic solver based on the Finite Element Method (FEM). Analysis of three different types of DGS cells including rectangular, circular and elliptical has been carried out. Moreover, Frequency tuning is also carried out by changing the dimension of DGS. Result : Proposed filter is fabricated on the dielectric material RT duroid 5880 with the dielectric constant ɛεr=2.2, dissipation factor tanδ=4 x 10-4 and height h= 0.508 mm. The measured return loss of 25.71 dB and insertion loss of 1.24 dB with 3 dB Fractional Bandwidth (FBW) of 4.8% at the center frequency of 7 GHz. Conclusion : Good agreements are observed between the experimental results and the simulations.


2019 ◽  
Vol 11 (9) ◽  
pp. 899-908
Author(s):  
Bo-Zhang Lan ◽  
Yan Qu ◽  
Chen-Jiang Guo ◽  
Jun Ding

AbstractA varactor-based fully reconfigurable microstrip bandpass-to-bandpass-with-embedded-stopband filter is presented in this paper. This filter offers wide center frequency and bandwidth tuning flexibility under both bandpass mode and bandpass-with-embedded-stopband mode. The entire tuning ability is based on multiple mode resonator theory and external quality factor tuning structure for bandpass mode and the introduction of transmission zeros (TZs) for bandpass-with-embedded-stopband mode. Under the bandpass mode, the center frequency tuning range is 0.96–1.45 GHz and the bandwidth can be tuned from 0.09 to 1.41 GHz with a fixed center frequency at 1.22 GHz. Under bandpass-with-embedded-stopband mode, the center frequency and bandwidth can be tuned from 0.94 to 1.61 GHz and 0.2–0.33 GHz, respectively. Good agreements are shown between simulated and measured results.


Sign in / Sign up

Export Citation Format

Share Document