Low-Temperature (260 °C) Solderless Cu–Cu Bonding for Fine-Pitch 3-D Packaging and Heterogeneous Integration

Author(s):  
Haesung Park ◽  
Hankyeol Seo ◽  
Yoonho Kim ◽  
Seungmin Park ◽  
Sarah Eunkyung Kim
2021 ◽  
Vol 11 (20) ◽  
pp. 9444
Author(s):  
Yoonho Kim ◽  
Seungmin Park ◽  
Sarah Eunkyung Kim

Low-temperature Cu-Cu bonding technology plays a key role in high-density and high-performance 3D interconnects. Despite the advantages of good electrical and thermal conductivity and the potential for fine pitch patterns, Cu bonding is vulnerable to oxidation and the high temperature of the bonding process. In this study, chip-level Cu bonding using an Ag nanofilm at 150 °C and 180 °C was studied in air, and the effect of the Ag nanofilm was investigated. A 15-nm Ag nanofilm prevented Cu oxidation prior to the Cu bonding process in air. In the bonding process, Cu diffused rapidly to the bonding interface and pure Cu-Cu bonding occurred. However, some Ag was observed at the bonding interface due to the short bonding time of 30 min in the absence of annealing. The shear strength of the Cu/Ag-Ag/Cu bonding interface was measured to be about 23.27 MPa, with some Ag remaining at the interface. This study demonstrated the good bonding quality of Cu bonding using an Ag nanofilm at 150 °C.


2017 ◽  
Vol 27 (7) ◽  
pp. 075019 ◽  
Author(s):  
Li Du ◽  
Tielin Shi ◽  
Lei Su ◽  
Zirong Tang ◽  
Guanglan Liao

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001531-001563
Author(s):  
Arnd Kilian ◽  
Gustavo Ramos ◽  
Rick Nichols ◽  
Robin Taylor ◽  
Vanessa Smet ◽  
...  

One constant in electronic system integration is the continuous trend towards smaller devices with increased functionality, driven by emerging mobile and high-performance applications. This brings the need for higher bandwidth at lower power, translating into increased I/O density, to enable highly-integrated systems with form factor reduction. These requirements result in the necessity of interconnection pitch-scaling, below 30 μm in the near future, and substrates with high wiring densities, leading to routing with sub 5 μm L/S where standard surface finishes (ENIG, ENEPIG) are no longer applicable. Copper pillar with solder caps technology is currently the prevalent solution for off-chip interconnections at fine pitch, dominating the high performance and mobile market with pitches as low as 40 μm in production. However, this technology faces many fundamental limitations in pitch scaling below 30 μm, due to solder bridging, IMC-solder interfacial stress management, and poor power handling capability of solders. All-copper interconnections without solder are very sought after by the semiconductor industry and have been applied to 3D-IC stacking, however no cost effective, manufacturable and scalable solution has been proposed to date for HVM and application to non CTE matched package structures. The low temperature Cu-Cu interconnection technology without solder recently patented by Georgia Tech PRC is one of the most promising solutions to this problem. The main bottleneck of copper oxidation is dealt with by application of ENIG on the Cu bumps and pads, enabling formation of a reliable metallurgical bond by thermocompression bonding (TCB) at temperatures below 200°C, in air, with cycle-times compatible with HVM targets. However, to ensure a bump collapse of 3 μm to overcome non-coplanarities and warpage, a pressure of 300MPa is used in the Process-of-Record (PoR) conditions, limiting the scalability of this technology. This paper introduces a novel Electroless Palladium / Autocatalytic Gold (EPAG) surface finish process, to enable the next generation of high density substrates and interconnections. With circa 100nm-thin Pd and Au layers, the EPAG finish can be applied to fine L/S wiring, with no risk of bridging adjacent Cu traces, even with spacing below 5 μm. Further, the EPAG finish is compatible with current interconnection processes; such as wire bonding, and the Cu pillar and solder cap technology for fine-pitch applications. For further pitch reduction, the EPAG surface finish was coupled to GT PRC's low-temperature Cu-interconnections, in an effort to reduce the bonding load for enhanced manufacturability without degrading the metallurgical bond or reliability. This paper is the first demonstration of such interconnections. The effect of the surface finish thickness and composition on the bonding load, assembly yield, quality of the metallurgical bond was extensively evaluated based on analysis of the metal interface microstructures and the chemical composition of the joints. The current PoR using Electroless Nickel / Immersion Gold (ENIG) coated Cu pillars and pads was used as reference. A novel surface finish is introduced, which allows formation of Cu-Cu interconnections without solder at lower pressure, between a silicon die and glass, organic or silicon substrate at fine pitch, allowing the performance improvements demanded by the IC Packaging Industry.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001847-001884
Author(s):  
Peter Ramm ◽  
Armin Klumpp ◽  
Alan Mathewson ◽  
Kafil M. Razeeb ◽  
Reinhard Pufall

The European 3D heterogeneous integration platform has been established by the consortium of the Integrated Project e-BRAINS [1], where technologies of the following relevant main categories of 3D integration are provided to enable future applications of smart sensor systems:3D System-on-Chip Integration - 3D-SOC: TSV technology for stacking of thinned devices or large IC blocks (global level),3D Wafer-Level-Packaging - 3D-WLP: embedding technology with through-polymer vias (TPV) for stacking of thinned ICs on wafer-level (no TSV), and3D System-in-Package - 3D-SIP: 3D stacking of packaged devices or substrates *definitions according to [2] Regarding TSV performance, the applications do not need ultra-high vertical interconnect densities as for 3D stacked Integrated Circuits – 3D-SIC*. Nevertheless, the lateral sizes of the TSVs are preferably minimized to allow for place and route for small “open” IC areas. Smaller TSVs are also preferred in order to reduce thermo-mechanical stress. e-BRAINS' focus is on how heterogeneous integration and sensor device technologies can be combined to bring new performance levels to targeted applications with high market potentials. The consortium, under coordination of Infineon and technical management by Fraunhofer EMFT, is composed of major European system manufacturers (Infineon, Siemens, SensoNor, 3D PLUS, Vermon and IQE), SMEs (DMCE, Magna Diagnostics, SORIN and eesy-ID), the large research institutions CEA Grenoble, Fraunhofer (EMFT Munich & IIS-EAS Dresden), imec, SINTEF, Tyndall and ITE Warsaw, and universities (EPFL Lausanne, TU Chemnitz and TU Graz). Target applications include automotive, ambient living and medical devices, with a specific focus on wireless sensor systems. Concerning the enabling 3D Heterogeneous Integration Platform, the e-BRAINS partners are working close together, where Infineon, Fraunhofer EMFT, imec and SINTEF are focusing mainly on 3D-SOC and 3D-WLP, and the French system manufacturer 3D PLUS and Tyndall on 3D-WLP and 3D-SIP technologies. The focus of this paper is on low-temperature bonding processes for highly reliable 3D integrated sensor systems. One of the key issues for heterogeneous systems production is the impact of 3D processes to the reliability of the product, i.e. the high built-in stresses caused by e.g. the CTE mismatch of complex layer structures (thin Si, ILDs, metals etc.) in combination with elevated bonding temperatures. As consequence, extensive project work was dedicated in the developments of reliable low-temperature bonding processes. Mainly intermetallic compound (IMC) bonding with Cu/Sn metal systems supported by ultrasonic agitation (Fraunhofer EMFT) was successfully introduced in 3D integration technology (see Fig. 2). A copper/tin solid-liquid interdiffusion (SLID) system was investigated using ultrasonic agitation to reduce the assembly temperature below the melting point of tin. Cleaning procedures are important shortly before joining the samples; dry cleaning has best results due to removal of thin oxide layers. Figure 2 shows a cross section of US supported Cu/Sn bonding at 150C. The intermetallic compounds Cu3Sn and Cu6Sn5 as well as pure tin easily can be identified. Due to low temperature assembly the most stable intermetallic compound (IMC) Cu3Sn has a minor share of the metal system. Most importantly there is no gap between top and bottom part of the joint despite the macroscopic assembly temperature is far away from the melting point of tin. But maybe the ultrasonic agitation brings enough energy to the interfaces, so locally melting can occur. In this way robust IMC bonding technology at 150C could be demonstrated with shear forces of 17 MPa and an alignment accuracy of 3 μm, well-suited for 3D integration. Figure 2: Low-temperature IMC bonding technology using ultrasonic agitation (Fraunhofer EMFT) Reliability for SLID contacts is certainly a very challenging objective especially looking for robust solutions in automotive applications. Thermally induced mechanical stress is the main reason for early fails during temperature cycling. Cross sectioned samples were investigated and methods like nanoindentation, Raman spectroscopy, fibDAC, and high local resolution x-ray scattering were applied to measure the intrinsic stresses. It can be shown that low temperature bonding is the right approach to avoid excessive stress cracking the interface or even fracturing the silicon. Also fatigue of metals can be reduced in a range that plastic deformation is no lifetime limiting factor.


Sign in / Sign up

Export Citation Format

Share Document