Electric Field and DC Breakdown Voltage of Multi-layer Dielectrics in Parallel-Plane Geometry

2021 ◽  
Vol 28 (1) ◽  
pp. 257-265
Author(s):  
Purnabhishek Muppala ◽  
C. C. Reddy
2021 ◽  
Author(s):  
A.S. Augustine Fletcher ◽  
D Nirmal ◽  
J Ajayan ◽  
L Arivazhagan ◽  
Husna Hamza K ◽  
...  

Abstract The influence of double deck T-gate on LG=0.2 μm AlN/GaN/AlGaN HEMT is analysed in this paper. The T-gate supported with Silicon Nitride provides a tremendous mechanical reliability. It drops off the crest electric-field at gate edges and postponing the breakdown voltage of a device. A 0.2-μm double deck T-gate HEMT on Silicon Carbide substrate offer fMAX of 107 Giga Hertz, fT of 60 Giga Hertz and the breakdown voltage of 136 Volts. Furthermore, it produces the maximum-transconductance and drain-current of 0.187 Siemens/mm and 0.41 Ampere/mm respectively. In addition, the lateral electric-field noticed at gate-edge shows 2.1×106 Volts/cm. Besides, the double deck T-gate AlN/GaN HEMT achieves a 45 % increment in breakdown voltage compared to traditional GaN-HEMT device. Moreover, it reveals a remarkable Johnson figure-of-merit of 7.9 Tera Hertz Volt. Therefore, the double deck T-gate on AlN/GaN/AlGaN HEMT is the superlative device for 60 GHz V-band satellite application.


2014 ◽  
Vol 778-780 ◽  
pp. 915-918 ◽  
Author(s):  
Keiji Wada ◽  
Kosuke Uchida ◽  
Ren Kimura ◽  
Mitsuhiko Sakai ◽  
Satoshi Hatsukawa ◽  
...  

Blocking characteristics of 2.2 kV and 3.3 kV -class 4H-SiC MOSFETs with various doping conditions for the edge termination region have been investigated. By optimizing the implanted dose into the edge termination structure consisting of junction termination extension (JTE) and field limiting ring (FLR), a breakdown voltage of 3,850 V for 3.3 kV -class MOSFET has been attained. This result corresponds to about 95% of the approximate parallel-plane breakdown voltage estimated from the doping concentration and the thickness of the epitaxial layer. Implanted doping for the JFET region is effective in reducing JFET resistance, resulting in the specific on-resistance of 14.2 mΩcm2 for 3.3 kV SiC MOSFETs. Switching characteristics at the high drain voltage of 2.0 kV are also discussed.


Author(s):  
Christoph Jörgens ◽  
Markus Clemens

Purpose In high voltage direct current (HVDC), power cables heat is generated inside the conductor and the insulation during operation. A higher amount of the generated heat in comparison to the dissipated one, results in a possible thermal breakdown. The accumulation of space charges inside the insulation results in an electric field that contributes to the geometric electric field, which comes from the applied voltage. The total electric field decreases in the vicinity of the conductor, while it increases near the sheath, causing a possible change of the breakdown voltage. Design/methodology/approach Here, the thermal breakdown is studied, also incorporating the presence of space charges. For a developed electro-thermal HVDC cable model, at different temperatures, the breakdown voltage is computed through numerical simulations. Findings The simulation results show a dependence of the breakdown voltage on the temperature at the location of the sheath. The results also show only limited influence of the space charges on the breakdown voltage. Research limitations/implications The study is restricted to one-dimensional problems, using radial symmetry of the cable, and does not include any aging or long-term effect of space charges. Such aging effect can locally increase the electric field, resulting in a reduced breakdown voltage. Originality/value A comparison of the breakdown voltage with and without space charges is novel. The chosen approach allows for the first time to assess the influence of space charges and field inversion on the thermal breakdown.


Author(s):  
A.V. Kozyrev ◽  
◽  
V.Yu. Kozhevnikov ◽  
A.O. Kokovin ◽  
S.Y. Medvedev ◽  
...  

Based on the self-sustaining condition of the discharge, a theoretical analysis was carried out in order to identify the minimum possible breakdown voltage. It is shown that a weak nonuniformity of the electric field in the discharge gap leads to an increase in the static breakdown voltage in comparison with the Paschen’s law. A strong nonuniformity of the field in diodes of coaxial and spherical geometry also cannot provide a decrease in the minimum breakdown voltage in comparison with the case of a plane-parallel gap. It is proved that of all symmetric geometries of a gas-filled diode, the planar geometry has the lowest breakdown voltage.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3075 ◽  
Author(s):  
Arthur F. Andrade ◽  
Edson G. Costa ◽  
Filipe L.M. Andrade ◽  
Clarice S.H. Soares ◽  
George R.S. Lira

International standards prescribe overvoltage tests to evaluate the insulating material performance of high-voltage cables. However, it is difficult to manage the electric fields at the cable ends when laboratory measurements are carried out because surface and external discharges occur at the cable termination. Therefore, this paper presents a procedure for designing cable terminations to reduce the electric field at the cable ends to appropriate levels even in the case of overvoltage tests. For this purpose, computer simulations of electric field distribution using the finite element method (FEM) were performed. A 35 kV cable model was employed as a sample. An voltage with RMS (root mean square) value of 300 kV was used as an overestimate of breakdown voltage for the internal insulating material. The cable termination model obtained through the proposed methodology allows an electric field reduction in air, preventing the occurrence of external discharges, and thus permitting the breakdown voltage measurement of the cable’s inner insulation.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 406 ◽  
Author(s):  
Biyan Liao ◽  
Quanbin Zhou ◽  
Jian Qin ◽  
Hong Wang

A 2-D simulation of off-state breakdown voltage (VBD) for AlGaN/GaN high electron mobility transistors (HEMTs) with multi field-plates (FPs) is presented in this paper. The effect of geometrical variables of FP and insulator layer on electric field distribution and VBD are investigated systematically. The FPs can modulate the potential lines and distribution of an electric field, and the insulator layer would influence the modulation effect of FPs. In addition, we designed a structure of HEMT which simultaneously contains gate FP, source FP and drain FP. It is found that the VBD of AlGaN/GaN HEMTs can be improved greatly with the corporation of gate FP, source FP and drain FP. We achieved the highest VBD in the HEMT contained with three FPs by optimizing the structural parameters including length of FPs, thickness of FPs, and insulator layer. For HEMT with three FPs, FP-S alleviates the concentration of the electric field more effectively. When the length of the source FP is 24 μm and the insulator thickness between the FP-S and the AlGaN surface is 1950 nm, corresponding to the average electric field of about 3 MV/cm at the channel, VBD reaches 2200 V. More importantly, the 2D simulation model is based on a real HMET device and will provide guidance for the design of a practical device.


Sign in / Sign up

Export Citation Format

Share Document