Compact model for amorphous layer thickness formed by ion implantation over wide ion implantation conditions

2006 ◽  
Vol 53 (5) ◽  
pp. 1186-1192 ◽  
Author(s):  
K. Suzuki ◽  
K. Kawamura ◽  
Y. Kikuchi ◽  
Y. Kataoka
2008 ◽  
Vol 55 (4) ◽  
pp. 1080-1084
Author(s):  
Kunihiro Suzuki ◽  
Yoko Tada ◽  
Yuji Kataoka ◽  
Kazuo Kawamura ◽  
Tsutomu Nagayama

2009 ◽  
Vol 56 (4) ◽  
pp. 627-633 ◽  
Author(s):  
Kunihiro Suzuki ◽  
Keiji Ikeda ◽  
Yoshimi Yamashita ◽  
Masaomi Harada ◽  
Noriyuki Taoka ◽  
...  

1996 ◽  
Vol 427 ◽  
Author(s):  
Hyeongtag Jeon ◽  
Sukjae Lee ◽  
Hwackjoo Lee ◽  
Hyun Ruh

AbstractTwo different Si(100) substrates, the 4°off-axis and the on-axis Si(100), were prepared. Ti thin films were deposited in an e-beam evaporation system and the amorphous layers of Ti-silicide were formed at different annealing temperatures. The Si(100) substrates before Ti film deposition were examined with AFM to verify the atomic scale roughness of the initial Si substrates. The amorphous layer was observed by HRTEM and TEM. And the chemical analysis and phase identification were examined by AES and XRD. The Si(100) substrate after HF clean shows the atomic scale microroughness such as atomic steps and pits on the Si surface. The on-axis Si(100) substrate exhibits much rougher surface morphologies than those of the off-axis Si(100). These differences of atomic scale roughnesses of Si substrates result in the difference of the thicknesses of amorphous Ti-silicide layers. The amorphous layer thicknesses on the on-axis exhibit thicker than those of the off-axis Si(100) and these differences inamorphous layer thicknesses became decreased as annealing temperatures increased. These indicate that the role of the atomic scale roughness on the amorphous layer thickness is much significant at low temperatures. In this study, the correlation between the atomic scale roughness and the amorphous layer thickness is discussed in terms of the atomic steps and pits based on the observation with using analysis tools such as AFM, TEM and HRTEM.


1997 ◽  
Vol 3 (S2) ◽  
pp. 467-468
Author(s):  
Lancy Tsung ◽  
Hun-Lian Tsai ◽  
Alwin Tsao ◽  
Makoto Takemura

Ion implantation of arsenic and phosphorus is a common practice in silicon devices for the formation of transistor source/drain regions. We used a TEM equipped with EDX capabilities to investigate effects of ion implantation in actual devices before and after annealing. A 200 kev field emission gun TEM was used in this study. Two implant cases were studied here. Both samples are p-type, (100) Si wafers.Figure 1 shows the microstructure in a common source region of a silicon device after being implanted by phosphorus (4x1014 cm−2 at 30 kv, 0°), while Figure 2 shows a similar region for arsenic implantation (5x1015 cm−2 at 45 kv, 0°). No screen layer was used during implantation. The phosphorus implant results in a ˜0.05 μm amorphous layer sandwiched between heavily damaged crystalline silicon. High resolution images reveal a rough amorphous/damaged crystalline boundary and high density defects due to silicon lattice displacements.


2014 ◽  
Vol 936 ◽  
pp. 1132-1137
Author(s):  
J. Jin ◽  
Y.B. Chen ◽  
K.W. Gao ◽  
X.l. Huang

The corrosion resistance of metal-N double-element alternate implanted M50NiL bearing steel was investigated by potentiodynamic polarization and detection methods of SEM, XPS, AES and TEM. The results showed that ion implanted M50NiL can increase the corrosion potential of substrate, reduce the corrosion active points and inhibit the corrosion reaction induced at the grain boundaries. The formed amorphous layer and strengthening phases take main roles in improving the corrosion resistance of M50NiL bearing steel.


1988 ◽  
Vol 100 ◽  
Author(s):  
D. X. Cao ◽  
D. K. Sood ◽  
A. P. Pogany

ABSTRACTIndium implantation into a-axis sapphire to peak concentrations of 8–45 mol % In produces amorphous surface layers.Migration of In during isothermal annealing at 600°C shows a strong ion dose dependence. For a dose of 6×1016In/cm2, two distinct types of In migration are seen - a) rapid diffusion of In within amorphous Al2O3 and b) diffusion of In into crystalline Al2O3 underlying the amorphous layer. For doses lower than 3×1016In/cm2 , no such migration of In is seen under identical anneal conditions. However, In undergoes phase separation into crystalline In2O3 particles embedded in amorphous Al2O3 at all doses.


2006 ◽  
Vol 527-529 ◽  
pp. 799-802
Author(s):  
Masataka Satoh ◽  
Tomoyuki Suzuki

The impurity concentration dependence of the recrystallization rate of phosphorus implanted 4H-SiC(11-20) has been investigated by means of Rutherford backscattering spectrometry in the annealing temperature range from 660 to 720 oC . The phosphorus ions were multiply implanted to form the implantation layer with the thickness of 200 nm and the phosphorus concentration of 1 x 1020, 4 x 1020, or 1 x 1021 /cm3, respectively. The recrystallization rate of the P ion implantation-induced amorphous layer in 4H-SiC(11-20) increases with an activation energy of 3.4 eV as does the case of the Ar ion implantation-induced amorphous layer in 6H-SiC(11-20) and (1-100). As the P concentration is increased from 1 x 1020 to 1 x 1021 /cm3, the recrystallization rate is enhanced from 3.5 to about 5nm/min, while the recrystallization rate for the Ar implantationinduced amorphous layer was 1.5 nm/min. It is suggested that the recrystallization process is enhanced by the presence of the substitutional impurity at the amorphous-crystalline interface during the recrystallization.


1996 ◽  
Vol 439 ◽  
Author(s):  
S. Tian ◽  
M. Morris ◽  
S. J. Morris ◽  
B. Obradovic ◽  
A. F. Tasch

AbstractWe present for the first time a physically based ion implantation damage model which successfully predicts both the as-implanted impurity range profiles and the damage profiles for a wide range of implant conditions for arsenic, boron, phosphorus, and BF2 implants into single-crystal (100) silicon. In addition, the amorphous layer thicknesses predicted by this damage model for high dose implants are also generally in excellent agreement with experiments. This damage model explicitly simulates the defect production and its subsequent evolution into the experimentally observable profiles for the first time. The microscopic mechanisms for damage evolution are further discussed.


1993 ◽  
Vol 316 ◽  
Author(s):  
C. Uslu ◽  
D. H. Lee ◽  
Y. Berta ◽  
B. Park ◽  
N. N. Thadhani ◽  
...  

ABSTRACTWe have investigated the synthesis of carbon-silicon-nitride compounds by ion implantation. In these experiments, 100 keV nitrogen ions were implanted into polycrystalline β-SiC (cubic phase) at various substrate temperatures and ion doses. These thin films were characterized in detail by x-ray diffraction with a position-sensitive detector, transmission electron microscopy with chemical analysis, and Rutherford backscattering spectroscopy. The as-implanted samples show a buried amorphous layer at a depth of 170 nm. The peak concentration of nitrogen saturates at approximately 45 at. % with doses above ~9.0×1017 N/cm2 at 860°C. These results suggest formation of a new phase by nitrogen implantation into β-SiC.


Sign in / Sign up

Export Citation Format

Share Document