Impact of ambient temperature influences on the cooling performance of heat sinks under forced air convection

Author(s):  
Ralph Schacht ◽  
Torsten Nowak
Author(s):  
Masaru Ishizuka ◽  
Shinji Nakagawa ◽  
Toru Honma

Cooling performances of small finned heat sinks were investigated in combined natural and forced air convection environment, and the way to use the data in designing a heat sink on a LSI package is explored. An experimental study was performed providing natural and forced air convection over the heat sink. Several heat sinks having different base areas, fin spacing and heights were tested. The test heat sink was heated up by an electrical heater to produce a specific heat flux on its base. The increase in fin temperature was measured by small thermocouples. In natural convection experiments, the effect of the supplied wattage on the temperature rise of the heat sink was examined. In forced convection experiments, a wind tunnel was used. The hear sink was set near the downstream end of the wind tunnel and a specific heat flux was applied to it. A correlation between the air velocity and the temperature rise of the heat sinks was developed. Furthermore, the results are reduced to non-dimensional expressions to facilitate the design of small heat sinks.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2286
Author(s):  
Jan Kominek ◽  
Martin Zachar ◽  
Michal Guzej ◽  
Erik Bartuli ◽  
Petr Kotrbacek

Miniaturization of electronic devices leads to new heat dissipation challenges and traditional cooling methods need to be replaced by new better ones. Polymer heat sinks may, thanks to their unique properties, replace standardly used heat sink materials in certain applications, especially in applications with high ambient temperature. Polymers natively dispose of high surface emissivity in comparison with glossy metals. This high emissivity allows a larger amount of heat to be dissipated to the ambient with the fourth power of its absolute surface temperature. This paper shows the change in radiative and convective heat transfer from polymer heat sinks used in different ambient temperatures. Furthermore, the observed polymer heat sinks have differently oriented graphite filler caused by their molding process differences, therefore their thermal conductivity anisotropies and overall cooling efficiencies also differ. Furthermore, it is also shown that a high radiative heat transfer leads to minimizing these cooling efficiency differences between these polymer heat sinks of the same geometry. The measurements were conducted at HEATLAB, Brno University of Technology.


Solar Energy ◽  
2021 ◽  
Vol 220 ◽  
pp. 24-34
Author(s):  
Letícia Ferraresi Hidalgo ◽  
Mariana Nascimento Candido ◽  
Karina Nishioka ◽  
José Teixeira Freire ◽  
Gustavo Nakamura Alves Vieira

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


2020 ◽  
Vol 2020 (0) ◽  
pp. 0126
Author(s):  
Koki Nakanishi ◽  
Takashi Fukue ◽  
Keiichi Hamatani ◽  
Hidemi Shirakawa

Author(s):  
Osamu Suzuki ◽  
Atsuo Nishihara

A novel electronics cooling system that uses water heat pipes under an ambient temperature range from −30°C to 40°C has been developed. The system consists of several water heat pipes, air-cooled fins, and a metal block. The heat pipes are separated into two groups according to the thermal resistance of their fins. One set of heat pipes, which have fins with higher thermal resistance, operates under an ambient temperature range from −30°C to 40°C. The other set, which have lower resistance, operates from 0°C to 40°C. A prediction model based on the frozen-startup limitation of a single heat pipe was first devised and experimentally verified. Then, a prediction model for the whole-system was formulated according to the former model. The whole-system model was used to design a prototype cooling system, and it was confirmed that the prototype has a suitable cooling performance for an environmentally friendly electronics cooling system.


Sign in / Sign up

Export Citation Format

Share Document