The Performance of Small Heat Sinks for LSI Packages in Combined Natural and Forced Convection Air Flows

Author(s):  
Masaru Ishizuka ◽  
Shinji Nakagawa ◽  
Toru Honma

Cooling performances of small finned heat sinks were investigated in combined natural and forced air convection environment, and the way to use the data in designing a heat sink on a LSI package is explored. An experimental study was performed providing natural and forced air convection over the heat sink. Several heat sinks having different base areas, fin spacing and heights were tested. The test heat sink was heated up by an electrical heater to produce a specific heat flux on its base. The increase in fin temperature was measured by small thermocouples. In natural convection experiments, the effect of the supplied wattage on the temperature rise of the heat sink was examined. In forced convection experiments, a wind tunnel was used. The hear sink was set near the downstream end of the wind tunnel and a specific heat flux was applied to it. A correlation between the air velocity and the temperature rise of the heat sinks was developed. Furthermore, the results are reduced to non-dimensional expressions to facilitate the design of small heat sinks.

The outline of a theoretical analysis to calculate the steady-state temperature distribution within a rectangular prism mounted on a semi-infinite heat sink is presented. The incident heat flux is uniform over a given centralized circular region on one face of the prism. The thermal conductivity of the material is treated as being dependent on the temperature. The model is used to calculate the maximum temperature rise within a heat sink configuration that is used to package contemporary two-terminal microwave oscillator devices. Results are presented that show how the maximum temperature rise within such commercially available heat sink packages depends on the input heat flux and the dimensions and thermal conductivity of the materials. These results are presented in a generalized form for device design purposes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


2003 ◽  
Vol 125 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Avram Bar-Cohen ◽  
Madhusudan Iyengar ◽  
Allan D. Kraus

The effort described herein extends the use of least-material single rectangular plate-fin analysis to multiple fin arrays, using a composite Nusselt number correlation. The optimally spaced least-material array was also found to be the globally best thermal design. Comparisons of the thermal capability of these optimum arrays, on the basis of total heat dissipation, heat dissipation per unit mass, and space claim specific heat dissipation, are provided for several potential heat sink materials. The impact of manufacturability constraints on the design and performance of these heat sinks is briefly discussed.


2021 ◽  
Vol 1163 ◽  
pp. 73-88
Author(s):  
Md Tanbir Sarowar

Microchannel heat sink plays a vital role in removing a considerable amount of heat flux from a small surface area from different electronic devices. In recent times, the rapid development of electronic devices requires the improvement of these heat sinks to a greater extent. In this aspect, the selection of appropriate substrate materials of the heat sinks is of vital importance. In this paper, three boron-based ultra-high temperature ceramic materials (ZrB2, TiB2, and HfB2) are compared as a substrate material for the microchannel heat sink using a numerical approach. The fluid flow and heat transfer are analyzed using the finite volume method. The results showed that the maximum temperature of the heat source didn’t exceed 355K at 3.6MWm-2 for any material. The results also indicated HfB2 and TiB2 to be more useful as a substrate material than ZrB2. By applying 3.6 MWm-2 heat flux at the source, the maximum obtained surface heat transfer coefficient was 175.2 KWm-2K-1 in a heat sink having substrate material HfB2.


2001 ◽  
Author(s):  
K. K. Sikka ◽  
C. George

Abstract Longitudinal-plate fin heat sinks are optimized under natural convection conditions for the horizontal orientation of the heat sink base plate. The thermal performance of the heat sinks is numerically modeled. The fin height, thickness and spacing and heat sink width are systematically varied. The numerical results are validated by experimentation. Results show that the thermal resistance of a heat sink minimizes for a certain number of fins on the base plate. The fin spacing-to-length ratio at which the minimum occurs is weakly dependent on the fin height and thickness and heat sink width. The flow fields reveal that the minimum occurs for the heat sink geometry in which the number of fins are maximized such that the flow velocity as the air exits the fins is fully developed. A correlation of the heat transfer with the heat sink geometrical parameters is also developed.


Author(s):  
Ling Ling ◽  
Yanfeng Fan ◽  
Ibrahim Hassan

Higher heat flux is produced by Micro-Electro-Mechanical Systems (MEMS) because of their reduced size and increased clock speed. At the mean time, studies of non-uniform heating conditions which are more practical than uniform heating conditions are inadequate and needed urgently. Four nonuniform heating conditions are simulated in the paper. Three heat sinks with different widths of cross-linked channels locating above the center of hotspots are studied and compared to conventional straight microchannel heat sink. Half of the module geometry is chosen to be the computational domain. Two hotspots are placed at the bottom surface. The coolant is water, whose properties are dependent on temperature. Two inlet velocities, 0.5 m/s and 1 m/s, are tested for each heat sink. Temperature profile at the hotspots, pressure drop and total thermal resistance are selected as criteria of evaluating heat sink performance. All heat sinks have better performance when there is an upstream hotspot or the upstream hotspot is subjected to a higher heat flux. Cross-linked channel width of 0.5 mm has the best benefit to obtain better temperature uniformity without increasing the maximum temperature on the bottom surface.


1990 ◽  
Vol 112 (3) ◽  
pp. 234-240 ◽  
Author(s):  
G. L. Lehmann ◽  
S. J. Kosteva

An experimental study of forced convection heat transfer is reported. Direct air cooling of an electronics packaging system is modeled by a channel flow, with an array of uniformly sized and spaced elements attached to one channel wall. The presence of a single or complete row of longitudinally finned heat sinks creates a modified flow pattern. Convective heat transfer rates at downstream positions are measured and compared to that of a plain array (no heat sinks). Heat transfer rates are described in terms of adiabatic heat transfer coefficients and thermal wake functions. Empirical correlations are presented for both variations in Reynolds number (5000 < Re < 20,000) and heat sink geometry. It is found that the presence of a heat sink can both enhance and degrade the heat transfer coefficient at downstream locations, depending on the relative position.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Elwassif ◽  
A. Datta ◽  
M. Bikson

There is a growing interest in the use of Deep Brain Stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or magnetic coupling (e.g., MRI) remain poorly understood, and methods to mitigate temperature increases are actively investigated. Indeed, brain function is especially sensitive to the changes in temperature including neuronal activity, metabolic functions, blood-brain barrier integrity, molecular stability, and viability. We developed technology to control tissue heating near DBS leads by modifying the thermal properties of lead materials. A micro-thermocouple was used to measure the temperature near DBS electrodes immersed in a saline bath. 3387 and 3389 Leads were energized using Medtronic DBS stimulators. The RMS of the driving voltage was monitored. Peak steady-state temperature was determined under different RMS values. A micro-positioning system was used, which allowed the generation of temperature field map. We developed and solved a finite element method (FEM) bio-heat transfer model of DBS incorporating realistic DBS lead architecture. The model was first validated using the experimental results (by matching saline thermal conductivity and electrical conductivity) and was then applied to develop methods to control temperature rises in the brain using heat-sink technology. Experimental measurements are consistent with theoretical predictions including: 1) Peak temperature increases directly with the RMS square of the applied voltage, such that different waveforms with the same RMS induce the same peak temperature rise; 2) Peak temperatures increases with contact proximity such the maximal temperature rise was observed using adjacent contacts of lead 3389; 3) Temperature decayed over ∼2 mm distance away from energized contacts. FEM results demonstrated the central role of lead materials (material properties and geometry) in controlling temperature rise by conducting heat: namely by acting as passive heat sinks. We report that the relatively high thermal conductivity of exiting DBS lead wiring affects the temperature field, indicating the importance of detailed lead architecture. We then demonstrate how modifying lead design to optimize heat conduction can effectively control temperature increases; the manifest advantages of this approach over complimentary heat-mitigation technologies is that heat-sink controls include: 1) insensitive to the mechanisms of heating (e.g., nature of magnetic coupling); 2) does not interfere with device efficacy (e.g., the electric fields induced in the tissue during stimulation are unaffected); and 3) can be practically implemented in a broad range of implanted devices (cardiac/neuro-prothethics, pumps...) without modifying device operation or implant procedure.


1994 ◽  
Vol 116 (4) ◽  
pp. 290-297 ◽  
Author(s):  
Morris B. Bowers ◽  
Issam Mudawar

Mini-channel (D = 2.54 mm) and micro-channel (D = 510 μm) heat sinks with a 1-cm2 heated surface were tested for their high heat flux performance with flow boiling of R-113. Experimental results yielded CHF values in excess of 200 W cm−2 for flow rates less than 95 ml min−1 (0.025 gpm) over a range of inlet subcooling from 10 to 32°C. Heat diffusion within the heat sink was analyzed to ascertain the optimum heat sink geometry in terms of channel spacing and overall thickness. A heat sink thickness to channel diameter ratio of 1.2 provided a good compromise between minimizing overall thermal resistance and structural integrity. A ratio of channel pitch to diameter of less than two produced negligible surface temperature gradients even with a surface heat flux of 200 W cm−2. To further aid in determining channel diameter for a specific cooling application, a pressure drop model was developed, which is presented in the second part of the study.


Author(s):  
Carlos Alberto Rubio-Jimenez ◽  
Abel Hernandez-Guerrero ◽  
Jose Cuauhtemoc Rubio-Arana ◽  
Satish Kandlikar

The present work shows a study developed of the thermal and hydrodynamic behaviors present in microchannel heat sinks formed by non-conventional arrangements. These arrangements are based on patterns that nature presents. There are two postulates that model natural forms in a mathematical way: the Allometric Law and the Biomimetic Tendency. Both theories have been applied in the last few years in different fields of science and technology. Using both theories, six models were analyzed (there are three cases proposed and both theories are applied to each case). Microchannel heat sinks with split channels are obtained as a result of applying these theories. Water is the cooling fluid of the system. The inlet hydraulic diameter is kept in each model in order to have a reference for comparison. The Reynolds number inside the heat sink remains below the transition Reynolds number value published by several researchers for this channel dimensions. The inlet Reynolds number of the fluid at the channel inlet is the same for each model. A heat flux is supplied to the bottom wall of the heat sink. The magnitude of this heat flux is 150 W/cm2. The temperature fields and velocity profiles are obtained for each case and compared.


Sign in / Sign up

Export Citation Format

Share Document