A 70dB MTPR integrated programmable gain/bandwidth 4th-order Chebyshev highpass filter for ADSL/VDSL receivers in 65nm CMOS

Author(s):  
Fang Lin ◽  
Xinyu Yu ◽  
Sumant Ranganathan ◽  
Tom Kwan
2017 ◽  
Vol 3 (3) ◽  
pp. 140
Author(s):  
Suci Rahmatia ◽  
Putri Wulandari ◽  
Nurul Khadiko ◽  
Fitria Gani Sulistya

<p><em>Abstrak </em><strong> - Antena merupakan alat pemancar yang akrab dengan aktifitas sehari-hari dan mudah sekali dijumpai, di rumah, di gedung, bahkan pada alat komunikasi yang digunakan. Salah satu antena yang sering digunakan adalah antena televisi. Antena televisi yang sering digunakan adalah Yagi-Uda yang biasanya dipakai sebagai outdoor antena dan antena dipole yang biasanya digunakan untuk indoor antena. Masing – masing jenis antena memiliki kriteria dan keuntungan berdasarkan dari kebutuhan penggunaannya. Baik antena dipole maupun antena Yagi-Uda memiliki perbedaan diantaranya adalah besar bandwidth, nilai gain, dan pola radiasi. Pada paper ini dapat diketahui bahwa bandwidth yang dimiliki antena yagi-uda lebih besar daripada antena dipole yakni 0.39943 MHz untuk antena yagi-uda dan 0.16569 MHz untuk antena dipole. Begitupula dengan besar Gain yang dimiliki antena Yagi-Uda (6.64 dBi) lebih besar dibandingkan dengan gain dari antena dipole (2.29 dBi). Perbedaan ini dikarenakan faktor elemen director dan ketebalannya.</strong></p><p><strong><br /></strong></p><p><strong><em>Kata Kunci</em></strong> – <em>Atena Televisi, Atena Yagi-Uda, Atena Dipole, Gain, Bandwidth</em></p><p><em> </em></p><p><em>Abstract</em> <strong>- Antenna is a transmitter tool that is familiar with daily activity and easy to find at home, in the building, even on the communication tool used. One of antenna that is often used is a television antenna. Television antennas are often used is Yagi-Uda which is usually used as an outdoor antenna and dipole antenna that is usually used for indoor antennas. Each type of antenna has the criteria and advantages based on the needs of its use. Both dipole antennas and Yagi-Uda antennas have differences among them are bandwidth, gain, and radiation pattern. In this paper it can be seen that the bandwidth of yagi-uda antenna is bigger than dipole antenna that is 0.39943 MHz for Yagi-Uda antenna and 0.16569 MHz for dipole antenna. Neither the large Gain of the Yagi-Uda antenna (6.64 dBi) is greater than the gain of the dipole antenna (2.29 dBi). This difference is due to element factor of director and its thickness.</strong></p><p><strong><br /></strong></p><p><strong><em>Keywords</em></strong><strong> – </strong><em>Television Antenna, Yagi-Uda Antenna, Dipole Antenna, Gain, Bandwidth</em><strong> </strong></p>


2021 ◽  
Vol 11 (13) ◽  
pp. 5793
Author(s):  
Bartosz Dominikowski

The accuracy of current measurements can be increased by appropriate amplification of the signal to within the measurement range. Accurate current measurement is important for energy monitoring and in power converter control systems. Resistance and inductive current transducers are used to measure the major current in AC/DC power converters. The output value of the current transducer depends on the load motor, and changes across the whole measurement range. Modern current measurement circuits are equipped with operational amplifiers with constant or programmable gain. These circuits are not able to measure small input currents with high resolution. This article proposes a precise loop gain system that can be implemented with various algorithms. Computer analysis of various automatic gain control (AGC) systems proved the effectiveness of the Mamdani controller, which was implemented in an MCU (microprocessor). The proposed fuzzy controller continuously determines the value of the conversion factor. The system also enables high resolution measurements of the current emitted from small electric loads (≥1 A) when the electric motor is stationary.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3614
Author(s):  
Arun Kesavan ◽  
Mu’ath Al-Hassan ◽  
Ismail Ben Mabrouk ◽  
Tayeb A. Denidni

A novel circular polarized dielectric antenna array (DRA) for millimeter-wave applications at 30 GHz is presented in this paper. The unit element array is a flower-shaped DRA fed with a cross slot. To obtain circular polarization, a sequential network combined with the cross slots is used to feed the 2×2 array. The prototype of the proposed antenna array is fabricated and measured to obtain a wide resonance bandwidth from 27 GHz to 38 GHz frequency band. Furthermore, this left-hand polarized antenna array has achieved a peak gain of 9.5 dBi with 3-dB axial ratio at 30 GHz. The proposed DRA array with wideband resonance and gain bandwidth has the potential to be used for millimeter-wave wireless communications at the 30 GHz band.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3288
Author(s):  
Dujuan Wei ◽  
Youlin Geng ◽  
Pengquan Zhang ◽  
Zhonghai Zhang ◽  
Chuan Yin

In this paper, a titled-beam antenna based on spoof surface plasmon polaritons (SSPPs) transmission lines (TLs) is proposed. The parallel SSPPs-TL is a slow-wave TL, which is able to limit waves in the TL strictly. By periodically introducing a set of tapered stubs along the SSPPs-TL, the backward endfire beams are formed by the surface waves in the slow-wave radiation region. Then, through the placement of a big metal plate below the endfire antenna, the backward endfire beams are tilted, and the tilted angle of the beams are steered by the distance of the metal plate and antenna. Over the band of 5.7 GHz~7.0 GHz, the tilted antenna performs constant shapes of radiation patterns. The gain keeps stable at around 12 dBi and the 1-dB gain bandwidth is 20%. The measured results of the fabricated prototypes confirm the design theory and simulated results.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1157 ◽  
Author(s):  
Robert Chebli ◽  
Mohamed Ali ◽  
Mohamad Sawan

We present in this paper a fully integrated low-noise high common-mode rejection ratio (CMRR) logarithmic programmable gain amplifier (LPGA) and chopped LPGA circuits for EEG acquisition systems. The proposed LPGA is based on a rail-to-rail true logarithmic amplifier (TLA) stage. The high CMRR achieved in this work is a result of cascading three amplification stages to construct the LPGA in addition to the lower common-mode gain of the proposed logarithmic amplification topology. In addition, the 1 / f noise and the inherent DC offset voltage of the input transistors are reduced using a chopper stabilization technique. The CMOS 180 nm standard technology is used to implement the circuits. Experimental results for the integrated LPGA show a CMRR of 140 dB, a differential gain of 37 dB, an input-referred noise of 0.754 μ Vrms, a 189 μ W power consumption from 1.8 V power supply and occupies an active area of 0.4 mm 2 .


2012 ◽  
Vol 48 (12) ◽  
pp. 698 ◽  
Author(s):  
Haixi Li ◽  
Jinyong Zhang ◽  
Lei Wang

Sign in / Sign up

Export Citation Format

Share Document