Rational design of novel N‐alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents

Author(s):  
Rajesh Kumar Meher ◽  
Pratyush Pragyandipta ◽  
Ravi K Pedapati ◽  
Praveen K R Nagireddy ◽  
Srinivas Kantevari ◽  
...  
2021 ◽  
Vol 22 ◽  
Author(s):  
Pelin Çıkla-Süzgün ◽  
Ş. Güniz Küçükgüzel

Abstract: Apoptosis, often called programmed cell death, is a self-directed cell destruction process. It differs from classical necrosis by activation of caspases. Apoptosis is directly related to cancer progression and plays a vital role in carcinogenesis. All cytotoxic drugs and radiation therapy programs initiates apoptosis in tumor cells. Today, studies show that heterocyclic compounds that contain triazole funtionality have anticancer activities. Triazoles are 5-membered rings, which contain two carbon and three nitrogen atoms Therefore, many researchers have synthesized these small active compounds as target structures and evaluated their apoptotic activities. The present review describs more recent medicinal aspects of triazoles as anticancer agents reported during the past few years. We hope that the bioactivity of triazole derivatives will be beneficial for the rational design of new generation of small molecule drugs.


Parasitology ◽  
1997 ◽  
Vol 114 (7) ◽  
pp. 145-151 ◽  
Author(s):  
W. E. GUTTERIDGE

New chemotherapies are urgently needed for the parasitic infections of animals and for the tropical diseases of man. Rational molecular design approaches to attempt to discover such products require a massive investment of resources up-front of actual chemical synthesis. However, such investment is justified, since chemical synthesis itself is highly resource-consuming. The fact that few targets have yet been validated to justify a rational approach is an argument only to get on and validate more. Not all the components of molecular design can yet be done totally rationally, but this is not an argument against applying this approach where it is possible. Absence of a successful track record is inevitable for any newly emerging technology. It is too early to draw conclusions about the relative costs of rational design versus empirical synthesis, since the former is only now beginning to become reality and the latter is in the middle of a (combinatorial) revolution. Similarly, it is too soon to predict with certainty which of these two approaches will prevail in the long run. However, they lend themselves to parallel tracks, so both may well continue for the foreseeable future. Current concerns about who would develop successful discoveries are not reasons for stopping discovery research. Indeed, a string of putative products held at the discovery/development interface would be useful ammunition to those trying to develop partnerships such as a Tropical Diseases R&D Alliance aimed at carrying out such work and sharing costs.


2016 ◽  
Vol 36 (2) ◽  
Author(s):  
Adebayo A. Adeniyi ◽  
Peter A. Ajibade

AbstractIn the search for novel anticancer agents, the development of metal-based complexes that could serve as alternatives to cisplatin and its derivatives has received considerable attention in recent years. This becomes necessary because, at present, cisplatin and its derivatives are the only coordination complexes being used as anticancer agents in spite of inherent serious side effects and their limitation against metastasized platinum-resistant cancer cells. Although many metal ions have been considered as possible alternatives to cisplatin, the most promising are ruthenium (Ru) complexes and two Ru compounds, KP1019 and NAMI-A, which are currently in phase II clinical trials. The major obstacle against the rational design of these compounds is the fact that their mode of action in relation to their therapeutic activities and selectivity is not fully understood. There is an urgent need to develop novel metal-based anticancer agents, especially Ru-based compounds, with known mechanism of actions, probable targets, and pharmacodynamic activity. In this paper, we review the current efforts in developing metal-based anticancer agents based on promising Ru complexes and the development of compounds targeting receptors and then examine the future prospects.


2021 ◽  
Vol 12 (3) ◽  
pp. 3977-3988

Cisplatin-based metal drugs have been widely used clinically as anticancer agents. However, these drugs also harm ordinary tissues because cisplatin kills cancer cells by attacking genomic DNA. Therefore, it has been shown that cisplatin-based metal drugs have some serious side effects that cannot be avoided. In order to replace the target site of genomic DNA, G-quadruplex nucleic acid is considered to be an alternative and attractive target for anticancer agents because G-quadruplex always folds into a parallel topology and is, therefore, more important than DNA. This review discussed the recent advancements in the rational design and the development of metal complexes containing anticancer drugs to interact and stabilize or cleave the G4 structure selectively. Further, we also highlighted the G4-interacting transition metal complexes, interacting modes, and their potentials to serve as anticancer drugs in the medical field. The significance of this survey lies in designing the metallodrugs from the most fundamental characteristic of electronic structural engineering to an increasingly reasonable dimension of bio-science.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 4 ◽  
Author(s):  
Houliang Tang ◽  
Weilong Zhao ◽  
Jinming Yu ◽  
Yang Li ◽  
Chao Zhao

Cancer remains a leading cause of death worldwide with more than 10 million new cases every year. Tumor-targeted nanomedicines have shown substantial improvements of the therapeutic index of anticancer agents, addressing the deficiencies of conventional chemotherapy, and have had a tremendous growth over past several decades. Due to the pathophysiological characteristics that almost all tumor tissues have lower pH in comparison to normal healthy tissues, among various tumor-targeted nanomaterials, pH-responsive polymeric materials have been one of the most prevalent approaches for cancer diagnosis and treatment. In this review, we summarized the types of pH-responsive polymers, describing their chemical structures and pH-response mechanisms; we illustrated the structure-property relationships of pH-responsive polymers and introduced the approaches to regulating their pH-responsive behaviors; we also highlighted the most representative applications of pH-responsive polymers in cancer imaging and therapy. This review article aims to provide general guidelines for the rational design of more effective pH-responsive nanomaterials for cancer diagnosis and treatment.


Author(s):  
Jiaqi Xiao ◽  
Meixiang Gao ◽  
Qiang Diao ◽  
Feng Gao

: Drug resistance including multidrug resistance resulting from different defensive mechanisms in cancer cells is the leading cause of the failure about the cancer therapy, making it an urgent need to develop more effective anticancer agents. Chalcones, widely distributed in nature, could act on diverse enzymes and receptors in cancer cells. Accordingly, chalcone derivatives possess potential activity against various cancers including drug-resistant even multidrug-resistant cancer. This review outlines the recent development of chalcone derivatives with potential activity against drug-resistant cancers covering articles published between 2010 and 2020, so as to facilitate further rational design of more effective candidate.


Author(s):  
Qihong Zhang ◽  
Xia Yu

: Cancer, a complex disease which involves abnormalities of multiple cellular pathways, is one of the most serious threatens to human health across the world. Chemotherapy with a single agent or a combined regimen is a standardized strategy for the treatment of almost all human cancers, and the cure rate of cancer increases with the continuous discovery of anticancer agents and the optimization of chemotherapy options. However, drug resistance especially multidrug resistance remains an obstacle in the effective treatment of cancer. Hence, it is urgent to develop novel agents with potential activity against cancers, especially drug-resistant forms. Acridine, which bears three fused rings, could intercalate into DNA and interfere with metabolic processes. Recently, acridines have been found with anticancer activity in a variety of malignancies through suppressing cell proliferation, stimulating apoptosis, and inducing cell cycle arrest, retarding migration, invasion and metastasis. Thus, acridines are useful scaffolds for the discovery of novel drug candidates with potent anticancer activity. This review focused on the current scenario of acridine hybrids with potential activity against cancers reported from Jan. 2015 to Feb. 2021. The mechanisms of action, the criteria of compound design as well as structure-activity relationships were also summarized to pave the way for further rational design of novel anticancer agents.


Author(s):  
Rongli Liu ◽  
Yani Hou ◽  
Yijun Gu

: Cancer is a life-threatening destructive disease. In the past several decades, the incidence of cancer has been dramatically increased mostly due to lifestyle changes. Chemotherapy plays an important role in the treatment of cancer, but the development of resistance against chemotherapeutic agents, the side effects, and non-specific toxicity threatens the efficiency of anticancer agents. Accordingly, it is necessary to develop novel anticancer drugs. Beyond the classical antibacterial activity, macrolides also demonstrated potential effects against both drug-sensitive and drug-resistant cancers through modulating diverse targets and signaling pathways, so rational design of macrolides may generate valuable therapeutic interventions for the treatment of cancers. The purpose of the present review article is to outline the current developments in macrolides with an emphasis on anticancer activity, structure-activity relationships, and mechanisms of action to lay the path for the development of novel macrolide anticancer candidates.


Sign in / Sign up

Export Citation Format

Share Document