Learning from neighboring farmers: Does spatial dependence affect adoption of drought‐tolerant wheat varieties in China?

Author(s):  
Hongyun Zheng ◽  
Wanglin Ma ◽  
Gucheng Li
2021 ◽  
Vol 22 (10) ◽  
pp. 5314
Author(s):  
Marlon-Schylor L. le Roux ◽  
Nicolas Francois V. Burger ◽  
Maré Vlok ◽  
Karl J. Kunert ◽  
Christopher A. Cullis ◽  
...  

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


2018 ◽  
Vol 10 (4) ◽  
pp. 575-583 ◽  
Author(s):  
Fereshteh JOKAR ◽  
Rahmatollah KARIMIZADEH ◽  
Asad MASOUMIASL ◽  
Reza AMIRI FAHLIANI

Durum wheat (Triticum durum L.) is used for the preparation of multiple food products, including pasta and bread. Its production is restricted due to diverse environmental stresses i.e. drought and heat stress. Here, comparative analysis of durum wheat varieties was done by studying canopy temperature depression (CTD) and chlorophyll content (CHL), yield and yield contributing traits to evaluate their performance under stress and low stress conditions. Twelve durum wheat genotypes were studied under stressful and low-stress conditions in Gachsaran region of Iran. CTD and CHL were measured at two stages, from the emergence of fifty percent of inflorescence (ZGS 54) to watery ripe stage (ZGS 71). According to stress tolerance index (STI), mean productivity (MP) and geometric mean productivity (GMP) indices, genotype G10 exhibited the most, while genotype G6, the least relative tolerance, respectively. Based on MP and GMP, genotype G10 was found to be drought tolerant, while genotype G2 displayed the lowest amount of MP and GMP. Therefore these genotypes are recommended to be used as genitors in artificial hybridization for improvement of drought tolerance in other cultivars. All indices had high correlation with grain yield under stress and non-stress condition, indicating more suitability of these indices for selection of resistant genotype. Results of the present study showed that among drought tolerance indices, harmonic mean (HM), GMP, CTD and modified STI index (K2STI) can be used as the most suitable indicators for screening drought tolerant cultivars.


2006 ◽  
Vol 7 (1) ◽  
Author(s):  
PN Njau ◽  
MG Kinyua ◽  
PK Kimurto ◽  
HK Okwaro ◽  
M Maluszynski

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 266 ◽  
Author(s):  
Jana Žiarovská ◽  
Juraj Medo ◽  
Matúš Kyseľ ◽  
Lucia Zamiešková ◽  
Miroslava Kačániová

Endophytic bacteria are an important part of different functions in plants that lead to plants’ production characteristics as well as their stress response mechanisms. Endophytic bacterial diversity was analyzed in this study to describe 16S rRNA variability and changes in the leaves of drought-tolerant and drought-susceptible wheat when growth under in vitro conditions. A metagenomic analysis was applied and a pilot exploratory study was performed to prove this type of analysis as applicable to tracking endophytic bacterial diversity changes when a drought stress is applied to an in vitro culture of wheat. The study showed that the changes in the bacterial endophytes’ variabilities associated preferentially with the drought stress varietal characteristics of the analyzed wheat instead of the applied stress conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mir Asif Iquebal ◽  
Pradeep Sharma ◽  
Rahul Singh Jasrotia ◽  
Sarika Jaiswal ◽  
Amandeep Kaur ◽  
...  

Abstract Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.


Author(s):  
S. Pykalo ◽  
◽  
O. Demydov ◽  
T. Yurchenko ◽  
S. Khomenko ◽  
...  

Wheat is one of the most valuable cereals on the planet and plays a leading role in the food supply of mankind. The range of wheat is very large, since it is cultivated on five continents in most countries of the world. The genetic improvement of wheat is crucial because of its direct impact on the economic development, international grain trade and food security of the country, so the relevance of research in solving many genetic-breeding problems regarding this crop is growing and acquires a qualitatively new character. The increase in productivity is the most important criterion in the cultivation of any crops, in particular wheat. Drought is one of the main limiting environmental factors that reduce plant productivity. In order to guarantee agriculture from losses in dry years, it is necessary to have varieties tolerant to moisture deficiency. That is why one of the priority areas of wheat breeding is the creation of varieties tolerant to the action of water deficiency. The success of breeding when creating drought tolerant forms largely depends on the correct assessment of the degree of their tolerance. Conducting research on the assessment of genotypes for tole­rance to water stress is one of conditions for increasing efficiency of the breeding process of this culture. The results obtained in the analysis of literature data, found that for screening of wheat varieties for drought tolerance there are many methods based on different principles of action, and each of them has its advantages and disadvantages. To accelerate the breeding process and obtain reliable results, it is necessary to apply various methods of researching samples on specific signs of tolerance to stress. The choice of method largely depends on the degree of its complexity, the duration of the assessment and throughput. Therefore, the creation of new and improvement of existing methods for assessing wheat breeding material for drought tolerance in conditions of increasing water deficit or temperature increase will make it possible to objectively characterize the level of adaptability of promising genotypes and predict their behavior in appropriate environmental conditions.


2020 ◽  
Vol 5 (2) ◽  
pp. 66
Author(s):  
Muhammad Kadir ◽  
Kaimuddin Kaimuddin ◽  
Yunus Musa ◽  
Muh Farid Badaruddin ◽  
Amin Nur

Abiotic factors, such as temperature and drought, are the main factors limiting the cultivation under the tropical condition. Two-stage experiments were conducted to examine the drought-tolerant potential of some wheat genotypes against the osmotic stress under the tropical condition at the Laboratory and Greenhouse of Hasanuddin University and Indonesian Cereal Research Institute. The experiments were arranged in a randomized block design with the split-plot pattern and respectively provided with four and three replications. The main plot was potential osmotic stress (0, -0. 33 , and -0.67 MPa) and the sub-plot was selected wheat genotypes (17 genotypes). The results indicates that based on the germination percentage, shoot/root ratio, proline content, stomatal behavior, and relative water content, the wheat lines of O/HP-78-A22-3-7, WBLL*2KURUKU, O/HP-6-A8-2-10, and O/HP-22-A27-1-10 are identified to have better drought-tolerance than the others genotypes based on the analysis of responses to parameters observed. The positively adaptive response of some tropical wheat genotypes to drought stress may be used as a potential donor for further development of drought-tolerant wheat varieties under the tropical climate in Indonesia. 


2020 ◽  
Vol 2 (2) ◽  
pp. 157-164
Author(s):  
S. Pykalo ◽  
O. Demydov ◽  
T. Yurchenko ◽  
S. Khomenko ◽  
O. Humeniuk ◽  
...  

2019 ◽  
Vol 28 (03) ◽  
pp. 56-60
Author(s):  
Ganbaatar B ◽  
Batbold S

Selection for drought tolerance typically involves evaluating genotypes for either high yield potential or stable performance under drought stress. In order to select drought tolerant varieties of bread wheat an experiment was conducted in a randomized complete block design (RCBD) with two replications during the growing season 2014-2018. Eight drought tolerance indices including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (MP), stress susceptibility index (SSI), tolerance index (TOL), yield index (YI), yield stability index (YSI) and drought resistance index (DI) were calculated and adjusted based on grain yield under drought years (Ys) and favorable years (Yp). Result of study showed significant positive correlation between grain yield in the stress condition (Ys) with indicators STI, GMP, TOL, MP, and DI, accordingly they are discriminating drought tolerant genotypes at the same manner. Wheat varieties Darkhan-172, Darkhan-72, Altaiskaya-325, Altaiskaya-70, Darkhan-181 has a high yield potential. Genotypes Darkhan-160, Arvin, Darkhan-144 most droughts tolerant and can be use in wheat breeding for improving drought resistance. Зусах зөөлөн буудайн сортуудыг ган тэсвэрийнүнэлэмжээр үнэлсэн дүнгээс Судалгаагаар манай оронд өргөн тариалагдаж байгаа өөрийн орны селекцээр гаргасан болон гадаадын нийт 20 сортонд ган тэсвэрийн индекс:стресс тэсвэрийн индекс (SТI), тэсвэрийн индекс (TOL),стресс мэдрэмжийн индекс (SSI), ган тэсвэрийн индекс (DI)-ээрүнэлгээ өгсөн. Зусах зөөлөн буудайн ургац ба ган тэсвэрийн индексүүдийн хооронд эерэг нягт хамааралыг тогтоосон. Чийгийн хангамж сайтай жилд потенциаль ургацаар буудайн эртийн болцтой Дархан-172, дунд-эртийн болцтой Дархан-72, Алтайская-325, Алтайская-70, дунд оройн болцтой Дархан-181 сортууд шалгарсан ба эдгээр сортуудыг селекцид хагас эрчимжсэн сорт гаргахад ашиглаж болно. Ган тэсвэр өндөртэй сортыг бий болгоходселекцид эртийн болцтой Дархан-160, дунд-эртийн болцтой Арвин, дунд оройн болцтой Дархан-144 сортуудыг эх материалаар ашиглаж болно. Зусах буудайн Дархан-144 сорт нь гадаад орчны нөхцөлд дасан зохицох чадвар сайтай сортоор шалгарав. Түлхүүр үг: болц,сорт, ургац, стресс, индекс


2015 ◽  
Vol 13 (1) ◽  
pp. 148-161 ◽  
Author(s):  
RP Meena ◽  
SC Tripathi ◽  
S Chander ◽  
RS Chookar ◽  
Msamrutha A Verma ◽  
...  

Moisture stress is a major constraint in productivity across the wheat growing zones of India. Climate change and uneven rainfall further aggravate the situation under moisture stress environments. Wheat genotypes capable of giving increased yield under a broad range of optimal and sub-optimal water availability are considered desirable. This study was undertaken to evaluate various selection indices of moisture stress and their applicability in identifying drought tolerant wheat genotypes which can adapt to various moisture stressed environments in different wheat growing zones of India i.e., North Western Plain Zone, North Eastern Plain Zone, Central Zone and Peninsular Zone. A set of wheat genotypes were tested under moisture stress condition of different irrigation regimes. Irrigation treatments were arranged as main plots and varieties as sub plots. Fifteen wheat varieties representing major wheat growing zones of India were tested for water stress tolerance during two consecutive years. It was found that yield under irrigated conditions (Ypi), yield under stress conditions (Ysi) and lower stress tolerance index (STI), were marked indices for stress tolerance. Significantly positive correlation of Ypi and Ysi with STI, mean productivity (MP), geometric mean productivity (GMP) were obtained during both the years of the study. The indices of STI, MP and GMP could be used as the desirable indices for screening drought tolerant varieties. On the basis of findings of these indices wheat varieties NI-5439, WH-1021 and HD-2733 were found having higher stress tolerance and with better yield potential under both normal and restricted irrigation conditions of India.SAARC J. Agri., 13(1): 148-161 (2015)


Sign in / Sign up

Export Citation Format

Share Document