scholarly journals RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mir Asif Iquebal ◽  
Pradeep Sharma ◽  
Rahul Singh Jasrotia ◽  
Sarika Jaiswal ◽  
Amandeep Kaur ◽  
...  

Abstract Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.

2021 ◽  
Vol 22 (10) ◽  
pp. 5314
Author(s):  
Marlon-Schylor L. le Roux ◽  
Nicolas Francois V. Burger ◽  
Maré Vlok ◽  
Karl J. Kunert ◽  
Christopher A. Cullis ◽  
...  

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii311-iii312
Author(s):  
Bernhard Englinger ◽  
Johannes Gojo ◽  
Li Jiang ◽  
Jens M Hübner ◽  
McKenzie L Shaw ◽  
...  

Abstract Ependymoma represents a heterogeneous disease affecting the entire neuraxis. Extensive molecular profiling efforts have identified molecular ependymoma subgroups based on DNA methylation. However, the intratumoral heterogeneity and developmental origins of these groups are only partially understood, and effective treatments are still lacking for about 50% of patients with high-risk tumors. We interrogated the cellular architecture of ependymoma using single cell/nucleus RNA-sequencing to analyze 24 tumor specimens across major molecular subgroups and anatomic locations. We additionally analyzed ten patient-derived ependymoma cell models and two patient-derived xenografts (PDXs). Interestingly, we identified an analogous cellular hierarchy across all ependymoma groups, originating from undifferentiated neural stem cell-like populations towards different degrees of impaired differentiation states comprising neuronal precursor-like, astro-glial-like, and ependymal-like tumor cells. While prognostically favorable ependymoma groups predominantly harbored differentiated cell populations, aggressive groups were enriched for undifferentiated subpopulations. Projection of transcriptomic signatures onto an independent bulk RNA-seq cohort stratified patient survival even within known molecular groups, thus refining the prognostic power of DNA methylation-based profiling. Furthermore, we identified novel potentially druggable targets including IGF- and FGF-signaling within poorly prognostic transcriptional programs. Ependymoma-derived cell models/PDXs widely recapitulated the transcriptional programs identified within fresh tumors and are leveraged to validate identified target genes in functional follow-up analyses. Taken together, our analyses reveal a developmental hierarchy and transcriptomic context underlying the biologically and clinically distinct behavior of ependymoma groups. The newly characterized cellular states and underlying regulatory networks could serve as basis for future therapeutic target identification and reveal biomarkers for clinical trials.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Milda Mickutė ◽  
Kotryna Kvederavičiūtė ◽  
Aleksandr Osipenko ◽  
Raminta Mineikaitė ◽  
Saulius Klimašauskas ◽  
...  

Abstract Background Targeted installation of designer chemical moieties on biopolymers provides an orthogonal means for their visualisation, manipulation and sequence analysis. Although high-throughput RNA sequencing is a widely used method for transcriptome analysis, certain steps, such as 3′ adapter ligation in strand-specific RNA sequencing, remain challenging due to structure- and sequence-related biases introduced by RNA ligases, leading to misrepresentation of particular RNA species. Here, we remedy this limitation by adapting two RNA 2′-O-methyltransferases from the Hen1 family for orthogonal chemo-enzymatic click tethering of a 3′ sequencing adapter that supports cDNA production by reverse transcription of the tagged RNA. Results We showed that the ssRNA-specific DmHen1 and dsRNA-specific AtHEN1 can be used to efficiently append an oligonucleotide adapter to the 3′ end of target RNA for sequencing library preparation. Using this new chemo-enzymatic approach, we identified miRNAs and prokaryotic small non-coding sRNAs in probiotic Lactobacillus casei BL23. We found that compared to a reference conventional RNA library preparation, methyltransferase-Directed Orthogonal Tagging and RNA sequencing, mDOT-seq, avoids misdetection of unspecific highly-structured RNA species, thus providing better accuracy in identifying the groups of transcripts analysed. Our results suggest that mDOT-seq has the potential to advance analysis of eukaryotic and prokaryotic ssRNAs. Conclusions Our findings provide a valuable resource for studies of the RNA-centred regulatory networks in Lactobacilli and pave the way to developing novel transcriptome and epitranscriptome profiling approaches in vitro and inside living cells. As RNA methyltransferases share the structure of the AdoMet-binding domain and several specific cofactor binding features, the basic principles of our approach could be easily translated to other AdoMet-dependent enzymes for the development of modification-specific RNA-seq techniques.


Author(s):  
Aniket Bhattacharya ◽  
Vineet Jha ◽  
Khushboo Singhal ◽  
Mahar Fatima ◽  
Dayanidhi Singh ◽  
...  

Abstract Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Our study highlights how exonized Alus could nucleate large-scale mRNA-miRNA interactions. Using a functional genomics approach, we characterize a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that has exonization of 23 Alus in its 3’UTR. CYP20A1_Alu-LT, confirmed by 3’RACE, is an outlier in length (9 kb 3’UTR) and widely expressed. Using publically available datasets, we demonstrate its expression in higher primates and presence in single nucleus RNA-seq of 15928 human cortical neurons. miRanda predicts ∼4700 miRNA recognition elements (MREs) for ∼1000 miRNAs, primarily originated within these 3’UTR-Alus. CYP20A1_Alu-LT could be a potential multi-miRNA sponge as it harbors ≥10 MREs for 140 miRNAs and has cytosolic localization. We further tested whether expression of CYP20A1_Alu-LT correlates with mRNAs harboring similar MRE targets. RNA-seq with conjoint miRNA-seq analysis was done in primary human neurons where we observed CYP20A1_Alu-LT to be downregulated during heat shock response and upregulated in HIV1-Tat treatment. 380 genes were positively correlated with its expression (significantly downregulated in heat shock and upregulated in Tat) and they harbored MREs for nine expressed miRNAs which were also enriched in CYP20A1_Alu-LT. MREs were significantly enriched in these 380 genes compared to random sets of differentially expressed genes (p = 8.134e-12). Gene ontology suggested involvement of these genes in neuronal development and hemostasis pathways thus proposing a novel component of Alu-miRNA mediated transcriptional modulation that could govern specific physiological outcomes in higher primates.


Patterns ◽  
2021 ◽  
Vol 2 (9) ◽  
pp. 100332
Author(s):  
N. Alexia Raharinirina ◽  
Felix Peppert ◽  
Max von Kleist ◽  
Christof Schütte ◽  
Vikram Sunkara

2021 ◽  
Vol 22 (13) ◽  
pp. 7029
Author(s):  
Cai-Yun Xiong ◽  
Qing-You Gong ◽  
Hu Pei ◽  
Chang-Jian Liao ◽  
Rui-Chun Yang ◽  
...  

In maize, the ear shank is a short branch that connects the ear to the stalk. The length of the ear shank mainly affects the transportation of photosynthetic products to the ear, and also influences the dehydration of the grain by adjusting the tightness of the husks. However, the molecular mechanisms of maize shank elongation have rarely been described. It has been reported that the maize ear shank length is a quantitative trait, but its genetic basis is still unclear. In this study, RNA-seq was performed to explore the transcriptional dynamics and determine the key genes involved in maize shank elongation at four different developmental stages. A total of 8145 differentially expressed genes (DEGs) were identified, including 729 transcription factors (TFs). Some important genes which participate in shank elongation were detected via function annotation and temporal expression pattern analyses, including genes related to signal transduction hormones (auxin, brassinosteroids, gibberellin, etc.), xyloglucan and xyloglucan xyloglucosyl transferase, and transcription factor families. The results provide insights into the genetic architecture of maize ear shanks and developing new varieties with ideal ear shank lengths, enabling adjustments for mechanized harvesting in the future.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2374
Author(s):  
Marium Khatun ◽  
Sumi Sarkar ◽  
Farzana Mustafa Era ◽  
A. K. M. Mominul Islam ◽  
Md. Parvez Anwar ◽  
...  

Grain legumes are important sources of proteins, essential micronutrients and vitamins and for human nutrition. Climate change, including drought, is a severe threat to grain legume production throughout the world. In this review, the morpho-physiological, physio-biochemical and molecular levels of drought stress in legumes are described. Moreover, different tolerance mechanisms, such as the morphological, physio-biochemical and molecular mechanisms of legumes, are also reviewed. Moreover, various management approaches for mitigating the drought stress effects in grain legumes are assessed. Reduced leaf area, shoot and root growth, chlorophyll content, stomatal conductance, CO2 influx, nutrient uptake and translocation, and water-use efficiency (WUE) ultimately affect legume yields. The yield loss of grain legumes varies from species to species, even variety to variety within a species, depending upon the severity of drought stress and several other factors, such as phenology, soil textures and agro-climatic conditions. Closure of stomata leads to an increase in leaf temperature by reducing the transpiration rate, and, so, the legume plant faces another stress under drought stress. The biosynthesis of reactive oxygen species (ROS) is the most detrimental effect of drought stress. Legumes can adapt to the drought stress by changing their morphology, physiology and molecular mechanism. Improved root system architecture (RSA), reduced number and size of leaves, stress-induced phytohormone, stomatal closure, antioxidant defense system, solute accumulation (e.g., proline) and altered gene expression play a crucial role in drought tolerance. Several agronomic, breeding both conventional and molecular, biotechnological approaches are used as management practices for developing a drought-tolerant legume without affecting crop yield. Exogenous application of plant-growth regulators (PGRs), osmoprotectants and inoculation by Rhizobacteria and arbuscular mycorrhizal fungi promotes drought tolerance in legumes. Genome-wide association studies (GWASs), genomic selection (GS), marker-assisted selection (MAS), OMICS-based technology and CRISPR/Cas9 make the breeding work easy and save time in the developmental cycle to get resistant legumes. Several drought-resistant grain legumes, such as the chickpea, faba bean, common bean and pigeon pea, were developed by different institutions. Drought-tolerant transgenic legumes, for example, chickpeas, are developed by introgressing desired genes through breeding and biotechnological approaches. Several quantitative trait loci (QTLs), candidate genes occupying drought-tolerant traits, are identified from a variety of grain legumes, but not all are under proper implementation. Hence, more research should be conducted to improve the drought-tolerant traits of grain legumes for avoiding losses during drought.


2019 ◽  
Author(s):  
Ning Wang ◽  
Andrew E. Teschendorff

AbstractInferring the activity of transcription factors in single cells is a key task to improve our understanding of development and complex genetic diseases. This task is, however, challenging due to the relatively large dropout rate and noisy nature of single-cell RNA-Seq data. Here we present a novel statistical inference framework called SCIRA (Single Cell Inference of Regulatory Activity), which leverages the power of large-scale bulk RNA-Seq datasets to infer high-quality tissue-specific regulatory networks, from which regulatory activity estimates in single cells can be subsequently obtained. We show that SCIRA can correctly infer regulatory activity of transcription factors affected by high technical dropouts. In particular, SCIRA can improve sensitivity by as much as 70% compared to differential expression analysis and current state-of-the-art methods. Importantly, SCIRA can reveal novel regulators of cell-fate in tissue-development, even for cell-types that only make up 5% of the tissue, and can identify key novel tumor suppressor genes in cancer at single cell resolution. In summary, SCIRA will be an invaluable tool for single-cell studies aiming to accurately map activity patterns of key transcription factors during development, and how these are altered in disease.


2018 ◽  
Vol 10 (4) ◽  
pp. 575-583 ◽  
Author(s):  
Fereshteh JOKAR ◽  
Rahmatollah KARIMIZADEH ◽  
Asad MASOUMIASL ◽  
Reza AMIRI FAHLIANI

Durum wheat (Triticum durum L.) is used for the preparation of multiple food products, including pasta and bread. Its production is restricted due to diverse environmental stresses i.e. drought and heat stress. Here, comparative analysis of durum wheat varieties was done by studying canopy temperature depression (CTD) and chlorophyll content (CHL), yield and yield contributing traits to evaluate their performance under stress and low stress conditions. Twelve durum wheat genotypes were studied under stressful and low-stress conditions in Gachsaran region of Iran. CTD and CHL were measured at two stages, from the emergence of fifty percent of inflorescence (ZGS 54) to watery ripe stage (ZGS 71). According to stress tolerance index (STI), mean productivity (MP) and geometric mean productivity (GMP) indices, genotype G10 exhibited the most, while genotype G6, the least relative tolerance, respectively. Based on MP and GMP, genotype G10 was found to be drought tolerant, while genotype G2 displayed the lowest amount of MP and GMP. Therefore these genotypes are recommended to be used as genitors in artificial hybridization for improvement of drought tolerance in other cultivars. All indices had high correlation with grain yield under stress and non-stress condition, indicating more suitability of these indices for selection of resistant genotype. Results of the present study showed that among drought tolerance indices, harmonic mean (HM), GMP, CTD and modified STI index (K2STI) can be used as the most suitable indicators for screening drought tolerant cultivars.


1999 ◽  
Vol 1999 ◽  
pp. 90-90
Author(s):  
P.C. Garnsworthy ◽  
J. Wiseman

Wheat is a good source of carbohydrates for ruminants, and recent low prices in the UK suggest that usage is likely to increase. However, there is a shortage of information on the digestibility of wheat in the rumen. Such information is vital for predicting the relative value of wheat as a source of fermentable metabolisable energy or by-pass starch. Digestibility is likely to be affected by growing conditions and genetics. Genetic differences are found between wheat varieties, but comparisons of named varieties yield limited information because many characteristics vary simultaneously. This problem can be overcome by using near-isogenic lines of wheat that vary only in a limited number of known characteristics. The objective of this study was to determine the rumen digestion characteristics of different near-isogenic wheat lines grown under the same agronomic conditions.


Sign in / Sign up

Export Citation Format

Share Document