Natural forests promote phosphorus retention in soil

2021 ◽  
Author(s):  
Zhen Yu ◽  
Guoyi Zhou ◽  
Lei Liu ◽  
Stefano Manzoni ◽  
Philippe Ciais ◽  
...  
2019 ◽  
Vol 48 (3) ◽  
pp. 417-425
Author(s):  
Md Khayrul Alam Bhuiyan ◽  
Md Akhter Hossain ◽  
Abdul Kadir Ibne Kamal ◽  
Mohammed Kamal Hossain ◽  
Mohammed Jashimuddin ◽  
...  

A study was conducted by using 5m × 5m sized 179 quadrates following multistage random sampling method for comparative regenerating tree species, quantitative structure, diversity, similarity and climate resilience in the degraded natural forests and plantations of Cox's Bazar North and South Forest Divisions. A total of 70 regenerating tree species were recorded representing maximum (47 species) from degraded natural forests followed by 43 species from 0.5 year 39 species from 1.5 year and 29 species from 2.5 year old plantations. Quantitative structure relating to ecological dominance indicated dominance of Acacia auriculiformis, Grewia nervosa and Lithocarpus elegans seedlings in the plantations whereas seedlings of Aporosa wallichii, Suregada multiflora and Grewia nervosa in degraded natural forests. The degraded natural forests possess higher natural regeneration potential as showed by different diversity indices. The dominance-based cluster analysis showed 2 major cluster of species under one of which multiple sub-clusters of species exists. Poor plant diversity and presence of regenerating exotic species in the plantations indicated poor climate resilience of forest ecosystem in terms of natural regeneration.


2012 ◽  
pp. 109-134
Author(s):  
P. S. Shirokikh ◽  
A. M. Kunafin ◽  
V. B. Martynenko

The secondary birch and aspen forests of middle stages of succession of the central elevated part of the Southern Urals are studied. 4 subassociations, 1 community, and 7 variants in the alliances of Aconito-Piceion and Piceion excelsae are allocated. It is shown that the floristic composition of aspen and birch secondary forests in the age of 60—80 years is almost identical to the natural forests. However, a slight increase the coenotical role of light-requiring species of grasslands and hemiboreal forests in the secondary communities of the class Brachypodio-Betuletea was noticed as well as some reduction of role the shade-tolerant species of nemoral complex and species of boreal forests of the class Vaccinio-Piceetea. Dominant tree layer under the canopy of secondary series is marked by an active growth of natural tree species.


2008 ◽  
Vol 159 (4) ◽  
pp. 80-90 ◽  
Author(s):  
Bogdan Brzeziecki ◽  
Feliks Eugeniusz Bernadzki

The results of a long-term study on the natural forest dynamics of two forest communities on one sample plot within the Białowieża National Park in Poland are presented. The two investigated forest communities consist of the Pino-Quercetum and the Tilio-Carpinetum type with the major tree species Pinus sylvestris, Picea abies, Betula sp., Quercus robur, Tilia cordata and Carpinus betulus. The results reveal strong temporal dynamics of both forest communities since 1936 in terms of tree species composition and of general stand structure. The four major tree species Scots pine, birch, English oak and Norway spruce, which were dominant until 1936, have gradually been replaced by lime and hornbeam. At the same time, the analysis of structural parameters indicates a strong trend towards a homogenization of the vertical stand structure. Possible causes for these dynamics may be changes in sylviculture, climate change and atmospheric deposition. Based on the altered tree species composition it can be concluded that a simple ≪copying≫ (mimicking) of the processes taking place in natural forests may not guarantee the conservation of the multifunctional character of the respective forests.


2021 ◽  
Vol 13 (11) ◽  
pp. 2075
Author(s):  
J. David Ballester-Berman ◽  
Maria Rastoll-Gimenez

The present paper focuses on a sensitivity analysis of Sentinel-1 backscattering signatures from oil palm canopies cultivated in Gabon, Africa. We employed one Sentinel-1 image per year during the 2015–2021 period creating two separated time series for both the wet and dry seasons. The first images were almost simultaneously acquired to the initial growth stage of oil palm plants. The VH and VV backscattering signatures were analysed in terms of their corresponding statistics for each date and compared to the ones corresponding to tropical forests. The times series for the wet season showed that, in a time interval of 2–3 years after oil palm plantation, the VV/VH ratio in oil palm parcels increases above the one for forests. Backscattering and VV/VH ratio time series for the dry season exhibit similar patterns as for the wet season but with a more stable behaviour. The separability of oil palm and forest classes was also quantitatively addressed by means of the Jeffries–Matusita distance, which seems to point to the C-band VV/VH ratio as a potential candidate for discrimination between oil palms and natural forests, although further analysis must still be carried out. In addition, issues related to the effect of the number of samples in this particular scenario were also analysed. Overall, the outcomes presented here can contribute to the understanding of the radar signatures from this scenario and to potentially improve the accuracy of mapping techniques for this type of ecosystems by using remote sensing. Nevertheless, further research is still to be done as no classification method was performed due to the lack of the required geocoded reference map. In particular, a statistical assessment of the radar signatures should be carried out to statistically characterise the observed trends.


2021 ◽  
Vol 446 ◽  
pp. 109500
Author(s):  
Gaurav Mishra ◽  
Avishek Sarkar ◽  
Krishna Giri ◽  
Arun Jyoti Nath ◽  
Rattan Lal ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 458
Author(s):  
Sol Milne ◽  
Julien G. A. Martin ◽  
Glen Reynolds ◽  
Charles S. Vairappan ◽  
Eleanor M. Slade ◽  
...  

Logging and conversion of tropical forests in Southeast Asia have resulted in the expansion of landscapes containing a mosaic of habitats that may vary in their ability to sustain local biodiversity. However, the complexity of these landscapes makes it difficult to assess abundance and distribution of some species using ground-based surveys alone. Here, we deployed a combination of ground-transects and aerial surveys to determine drivers of the critically endangered Bornean Orangutan (Pongo pygmaeus morio) distribution across a large multiple-use landscape in Sabah, Malaysian Borneo. Ground-transects and aerial surveys using drones were conducted for orangutan nests and hemi-epiphytic strangler fig trees (Ficus spp.) (an important food resource) in 48 survey areas across 76 km2, within a study landscape of 261 km2. Orangutan nest count data were fitted to models accounting for variation in land use, above-ground carbon density (ACD, a surrogate for forest quality), strangler fig density, and elevation (between 117 and 675 m). Orangutan nest counts were significantly higher in all land uses possessing natural forest cover, regardless of degradation status, than in monoculture plantations. Within these natural forests, nest counts increased with higher ACD and strangler fig density, but not with elevation. In logged forest (ACD 14–150 Mg ha−1), strangler fig density had a significant, positive relationship with orangutan nest counts, but this relationship disappeared in a forest with higher carbon content (ACD 150–209 Mg ha−1). Based on an area-to-area comparison, orangutan nest counts from ground transects were higher than from counts derived from aerial surveys, but this did not constitute a statistically significant difference. Although the difference in nest counts was not significantly different, this analysis indicates that both methods under-sample the total number of nests present within a given area. Aerial surveys are, therefore, a useful method for assessing the orangutan habitat use over large areas. However, the under-estimation of nest counts by both methods suggests that a small number of ground surveys should be retained in future surveys using this technique, particularly in areas with dense understory vegetation. This study shows that even highly degraded forests may be a suitable orangutan habitat as long as strangler fig trees remain intact after areas of forest are logged. Enrichment planting of strangler figs may, therefore, be a valuable tool for orangutan conservation in these landscapes.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 261
Author(s):  
Alexander Cotrina Sánchez ◽  
Nilton B. Rojas Briceño ◽  
Subhajit Bandopadhyay ◽  
Subhasis Ghosh ◽  
Cristóbal Torres Guzmán ◽  
...  

The increasing demand for tropical timber from natural forests has reduced the population sizes of native species such as Cedrela spp. because of their high economic value. To prevent the decline of population sizes of the species, all Cedrela species have been incorporated into Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The study presents information about the modeled distribution of the genus Cedrela in Peru that aims to identify potential habitat distribution of the genus, its availability in areas protected by national service of protected areas, and highlighted some areas because of their conservation relevance and the potential need for restoration. We modeled the distribution of the genus Cedrela in Peru using 947 occurrence records that included 10 species (C. odorata, C. montana, C. fissilis, C. longipetiolulata, C. angustifolia, C. nebulosa, C. kuelapensis, C. saltensis, C. weberbaueri, and C. molinensis). We aim to identify areas environmentally suitable for the occurrence of Cedrela that are legally protected by the National Service of Protected Areas (PAs) and those that are ideal for research and restoration projects. We used various environmental variables (19 bioclimatic variables, 3 topographic factors, 9 edaphic factors, solar radiation, and relative humidity) and the maximum entropy model (MaxEnt) to predict the probability of occurrence. We observed that 6.7% (86,916.2 km2) of Peru presents a high distribution probability of occurrence of Cedrela, distributed in 17 departments, with 4.4% (10,171.03 km2) of the area protected by PAs mainly under the category of protection forests. Another 11.65% (21,345.16 km2) of distribution covers areas highly prone to degradation, distributed mainly in the departments Ucayali, Loreto, and Madre de Dios, and needs immediate attention for its protection and restoration. We believe that the study will contribute significantly to conserve Cedrela and other endangered species, as well as to promote the sustainable use and management of timber species as a whole.


Author(s):  
Heidi J. Albers ◽  
Stephanie Brockmann ◽  
Beatriz Ávalos-Sartorio

Abstract Low and highly variable prices plague the coffee market, generating concerns that coffee farmers producing in shade systems under natural forests, as in biodiversity hotspot Oaxaca, Mexico, will abandon production and contribute to deforestation and reduced ecosystem services. Using stakeholder information, we build a setting-informed model to analyze farmers' decisions to abandon shade-grown coffee production and their reactions to policy to reduce abandonment. Exploring price premiums for bird-friendly certified coffee, payments for ecosystem services, and price floors as policies, we find that once a farmer is on the path toward abandonment, it is difficult to reverse. However, implementing policies early that are low cost to farmers – price floors and no-cost certification programs – can stem abandonment. Considering the abandonment that policy avoids per dollar spent, price floors are the most cost-effective policy, yet governments prefer certification programs that push costs onto international coffee consumers who pay the price premium.


2020 ◽  
Vol 12 (20) ◽  
pp. 8337
Author(s):  
Dastan Bamwesigye ◽  
Petr Kupec ◽  
Georges Chekuimo ◽  
Jindrich Pavlis ◽  
Obed Asamoah ◽  
...  

Charcoal and firewood fuel biomass utilization is thought to be the main cause of deforestation in Uganda. Moreover, the practice of utilizing charcoal and wood fuel in Uganda is said to impact the health of many women and children in the region. The goal of this study was to comprehensively analyze charcoal and wood fuel utilization processes in Uganda and sub-Saharan Africa and the environmental and socioeconomic dynamics and implications. The study equally intended to model out some possible improvements to wood fuel use while conserving natural forests. Both qualitative and qualitative approaches were used to study the charcoal and wood fuel energy situation in Uganda. The study collected field data (sample size: 199) which was subjected to descriptive analysis. The findings show that over 90% of households in Uganda and the sub- Saharan region use firewood and charcoal wood fuel, and that this fuel use creates social and environmental hazards. Our findings are also in agreement with numerous empirical studies showing that firewood and charcoal biomass are among the major causes of deforestation in Uganda and the sub-Saharan region. Ceteris paribus, we propose the adoption of Improved Eco-Stoves (ICE), which not only enable comprehensive combustion but also lessen the quantity of firewood used by more than 60%, together with policy decisions on the government of Uganda, given peoples willingness to take on alternative energy sources such as gas and electricity.


Sign in / Sign up

Export Citation Format

Share Document