The Neural Bases of Placebo Effects in Pain

2005 ◽  
Vol 14 (4) ◽  
pp. 175-179 ◽  
Author(s):  
Tor D. Wager

Placebo effects are beneficial effects of treatment caused not by the biological action of the treatment but by one's response to the treatment process itself. One possible mechanism of placebo treatments is that they create positive expectations, which change one's appraisal of the situation and may thereby shape sensory and emotional processing. Recent brain-imaging evidence suggests that placebo-induced expectations of analgesia increase activity in the prefrontal cortex in anticipation of pain and decrease the brain's response to painful stimulation. These findings suggest that placebo treatments can alter experience, not just alter what participants are willing to report about pain. To the extent that they involve neural systems mediating expectancy and appraisal, placebo effects in pain may share common circuitry with placebo effects in depression, Parkinson's disease, and other disorders.

Author(s):  
Satoshi Tsujimoto ◽  
Mariko Kuwajima ◽  
Toshiyuki Sawaguchi

Abstract. The lateral prefrontal cortex (LPFC) plays a major role in both working memory (WM) and response inhibition (RI), which are fundamental for various cognitive abilities. We explored the relationship between these LPFC functions during childhood development by examining the performance of two groups of children in visuospatial and auditory WM tasks and a go/no-go RI task. In the younger children (59 5- and 6-year-olds), performance on the visuospatial WM task correlated significantly with that in the auditory WM task. Furthermore, accuracy in these tasks correlated significantly with performance on the RI task, particularly in the no-go trials. In contrast, there were no significant correlations among those tasks in older children (92 8- and 9-year-olds). These results suggest that functional neural systems for visuospatial WM, auditory WM, and RI, especially those in the LPFC, become fractionated during childhood, thereby enabling more efficient processing of these critical cognitive functions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoli Huang ◽  
Yuanyuan Wang ◽  
Zifeng Wu ◽  
Jiali Xu ◽  
Ling Zhou ◽  
...  

AbstractKetamine has been demonstrated to be a rapid-onset and long-lasting antidepressant, but its underlying molecular mechanisms remain unclear. Recent studies have emerged microRNAs as important modulators for depression treatment. In this study, we report that miR-98-5p is downregulated in the prefrontal cortex and hippocampus of mice subjected to chronic social stress, while overexpressing it by its agonist alleviates depression-like behaviors. More importantly, we demonstrate that miR-98-5p is upregulated by ketamine administration, while inhibition of it by its antagonist blocks the antidepressant effect of ketamine. Our data implicate a novel molecular mechanism underlying the antidepressant effect of ketamine, and that therapeutic strategies targeting miR-98-5p could exert beneficial effects for depression treatment.


Author(s):  
Juliette Peltzer ◽  
Kyle Lund ◽  
Marie-Emmanuelle Goriot ◽  
Marion Grosbot ◽  
Jean-Jacques Lataillade ◽  
...  

Mesenchymal stromal cell (MSC)-based cell therapy has received great interest in regenerative medicine. Priming the cells during the culture phase can improve their efficacy and/or survival after injection. The literature suggests that MSC extracellular vesicles (EV) can recapitulate a substantial part of the beneficial effects of the cells they originate from, and that micro-RNAs (miRNAs) are important players in EV biological action. Here, our aim was to determine if two classical priming methods of MSC, interferon-gamma (IFNγ) and hypoxia (HYP), could modify their EV miRNA content. Human bone marrow MSCs (BM-MSCs) from five healthy donors were cultured with IFNγ or in HYP or in control (CONT) conditions. The conditioned media were collected after 48 h in serum-free condition and EV were isolated by ultracentrifugation. Total RNA was isolated, pools of CONT, IFN, and HYP cDNA were prepared, and a miRNA profiling was performed using RT-qPCR. Then, miRNAs were selected based on their detectability and measured on each individual EV sample. Priming had no effect on EV amount or size distribution. A set of 81 miRNAs was detected in at least one of the pools of EVs. They were measured on each individual sample; 41 miRNAs were detected in all samples. The principal component analysis (PCA) failed to discriminate the groups. HYP induced a significant decrease in EV hsa-miR-34a-3p content and IFN induced a significant increase in five miRNAs (hsa-miR-25-3p, hsa-miR-106a-5p, hsa-miR-126-3p, hsa-miR-451a, and hsa-miR-665). Taken together, we found only limited alterations in the miRNA landscape of MSC EV with a high inter-individual variability.


2018 ◽  
Author(s):  
Paul Hoffman

AbstractThe ability to speak coherently is essential for effective communication but declines with age: older people more frequently produce tangential, off-topic speech. Little is known, however, about the neural systems that support coherence in speech production. Here, fMRI was used to investigate extended speech production in healthy older adults. Computational linguistic analyses were used to quantify the coherence of utterances produced in the scanner, allowing identification of the neural correlates of coherence for the first time. Highly coherent speech production was associated with increased activity in bilateral inferior prefrontal cortex (BA45), an area implicated in selection of task-relevant knowledge from semantic memory, and in bilateral rostrolateral prefrontal cortex (BA10), implicated more generally in planning of complex goal-directed behaviours. These findings demonstrate that neural activity during spontaneous speech production can be predicted from formal analysis of speech content, and that multiple prefrontal systems contribute to coherence in speech.


2015 ◽  
Vol 113 (2) ◽  
pp. 350-365 ◽  
Author(s):  
M. H. Mohajeri ◽  
J. Wittwer ◽  
K. Vargas ◽  
E. Hogan ◽  
A. Holmes ◽  
...  

Common pharmacological treatments of mood disorders aim to modulate serotonergic neurotransmission and enhance serotonin levels in the brain. Brain serotonin levels are dependent on the availability of its food-derived precursor essential amino acid tryptophan (Trp). We tested the hypothesis that delivery of Trp via food may serve as an alternative treatment, and examined the effects of a Trp-rich, bioavailable dietary supplement from egg protein hydrolysate on cognitive and emotional functions, mood state, and sleep quality. In a randomised, placebo-controlled, parallel trial, fifty-nine mentally and physically healthy women aged 45–65 years received placebo (n 30) or the supplement (n 29) (both as 0·5 g twice per d) for 19 d. Emotional processing was significantly changed by supplementation, exhibiting a shift in bias away from negative stimuli. The results for the Affective Go/No-Go Task exhibited a slowing of responses to negative words, suggesting reduced attention to negative emotional stimuli. The results for the Facial Emotional Expression Rating Task also supported a shift away from attention to negative emotions and a bias towards happiness. An increase in arousal-like symptoms, labelled ‘high energy’, shorter reaction times and a slight benefit to sustained attention were observed in the treated subjects. Finally, when the supplement was taken 60–90 min before bedtime, a feeling of happiness before going to bed was consistently reported. In summary, daily consumption of a low-dose supplement containing bioavailable Trp may have beneficial effects on emotional and cognitive functions.


Sign in / Sign up

Export Citation Format

Share Document