Chronic treatment with a tryptophan-rich protein hydrolysate improves emotional processing, mental energy levels and reaction time in middle-aged women

2015 ◽  
Vol 113 (2) ◽  
pp. 350-365 ◽  
Author(s):  
M. H. Mohajeri ◽  
J. Wittwer ◽  
K. Vargas ◽  
E. Hogan ◽  
A. Holmes ◽  
...  

Common pharmacological treatments of mood disorders aim to modulate serotonergic neurotransmission and enhance serotonin levels in the brain. Brain serotonin levels are dependent on the availability of its food-derived precursor essential amino acid tryptophan (Trp). We tested the hypothesis that delivery of Trp via food may serve as an alternative treatment, and examined the effects of a Trp-rich, bioavailable dietary supplement from egg protein hydrolysate on cognitive and emotional functions, mood state, and sleep quality. In a randomised, placebo-controlled, parallel trial, fifty-nine mentally and physically healthy women aged 45–65 years received placebo (n 30) or the supplement (n 29) (both as 0·5 g twice per d) for 19 d. Emotional processing was significantly changed by supplementation, exhibiting a shift in bias away from negative stimuli. The results for the Affective Go/No-Go Task exhibited a slowing of responses to negative words, suggesting reduced attention to negative emotional stimuli. The results for the Facial Emotional Expression Rating Task also supported a shift away from attention to negative emotions and a bias towards happiness. An increase in arousal-like symptoms, labelled ‘high energy’, shorter reaction times and a slight benefit to sustained attention were observed in the treated subjects. Finally, when the supplement was taken 60–90 min before bedtime, a feeling of happiness before going to bed was consistently reported. In summary, daily consumption of a low-dose supplement containing bioavailable Trp may have beneficial effects on emotional and cognitive functions.

2005 ◽  
Vol 94 (5) ◽  
pp. 859-864 ◽  
Author(s):  
Joan Sabaté ◽  
Zaida Cordero-MacIntyre ◽  
Gina Siapco ◽  
Setareh Torabian ◽  
Ella Haddad

Studies consistently show the beneficial effects of eating nuts, but as high-energy foods, their regular consumption may lead to weight gain. We tested if daily consumption of walnuts (approximately 12% energy intake) for 6 months would modify body weight and body composition in free-living subjects. Ninety participants in a 12-month randomized cross-over trial were instructed to eat an allotted amount of walnuts (28–56g) during the walnut-supplemented diet and not to eat them during the control diet, with no further instruction. Subjects were unaware that body weight was the main outcome. Dietary compliance was about 95% and mean daily walnut consumption was 35g during the walnut-supplemented diet. The walnut-supplemented diet resulted in greater daily energy intake (557kJ (133kcal)), which should theoretically have led to a weight gain of 3·1kg over the 6-month period. For all participants, walnut supplementation increased weight (0·4 (se 0·1) kg), BMI (0·2 (se 0·1) kg/m2), fat mass (0·2 (se 0·1) kg) and lean mass (0·2 (se 0·1) kg). But, after adjusting for energy differences between the control and walnut-supplemented diets, no significant differences were observed in body weight or body composition parameters, except for BMI (0·1 (se 0·1) kg/m2). The weight gain from incorporating walnuts into the diet (control→walnut sequence) was less than the weight loss from withdrawing walnuts from the diet (walnut→control sequence). Our findings show that regular walnut intake resulted in weight gain much lower than expected and which became non-significant after controlling for differences in energy intake.


2019 ◽  
Author(s):  
Ajay Gautam ◽  
Marcel Sadowski ◽  
Nils Prinz ◽  
Henrik Eickhoff ◽  
Nicolo Minafra ◽  
...  

<p>Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I), a site-disorder between the anionsS<sup>2–</sup>and X<sup>–</sup>has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such disorder in Li<sub>6</sub>PS<sub>5</sub>Br can be engineered <i>via</i>the synthesis method. By comparing fast cooling (<i>i.e. </i>quenching) to more slowly cooled samples, we find that anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with <i>ab-initio</i>molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within one minute of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced <i>via</i>quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.</p>


2020 ◽  
Author(s):  
Lluís Hernández-Navarro ◽  
Ainhoa Hermoso-Mendizabal ◽  
Daniel Duque ◽  
Alexandre Hyafil ◽  
Jaime de la Rocha

It is commonly assumed that, during perceptual decisions, the brain integrates stimulus evidence until reaching a decision, and then performs the response. There are conditions, however (e.g. time pressure), in which the initiation of the response must be prepared in anticipation of the stimulus presentation. It is therefore not clear when the timing and the choice of perceptual responses depend exclusively on evidence accumulation, or when preparatory motor signals may interfere with this process. Here, we find that, in a free reaction time auditory discrimination task in rats, the timing of fast responses does not depend on the stimulus, although the choices do, suggesting a decoupling of the mechanisms of action initiation and choice selection. This behavior is captured by a novel model, the Parallel Sensory Integration and Action Model (PSIAM), in which response execution is triggered whenever one of two processes, Action Initiation or Evidence Accumulation, reaches a bound, while choice category is always set by the latter. Based on this separation, the model accurately predicts the distribution of reaction times when the stimulus is omitted, advanced or delayed. Furthermore, we show that changes in Action Initiation mediates both post-error slowing and a gradual slowing of the responses within each session. Overall, these results extend the standard models of perceptual decision-making, and shed a new light on the interaction between action preparation and evidence accumulation.


2019 ◽  
Vol 25 (23) ◽  
pp. 2555-2568 ◽  
Author(s):  
Rajeev Taliyan ◽  
Sarathlal K. Chandran ◽  
Violina Kakoty

Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer’s Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.


2019 ◽  
Vol 19 (3) ◽  
pp. 316-325
Author(s):  
Mahdi Goudarzvand ◽  
Yaser Panahi ◽  
Reza Yazdani ◽  
Hosein Miladi ◽  
Saeed Tahmasebi ◽  
...  

Objective: Experimental autoimmune encephalomyelitis (EAE) is a widely used model for multiple sclerosis. The present study has been designed to compare the efficiencies of oral and intraperitoneal (IP) administration of D-aspartate (D-Asp) on the onset and severity of EAE, the production of neurosteroids, and the expression of neurosteroid receptors and inflammatory mediators in the brain of EAE mice. Methods: In this study, EAE was induced in C57BL/6 mice treated with D-Asp orally (D-Asp-Oral) or by IP injection (D-Asp-IP). On the 20th day, brains (cerebrums) and cerebellums of mice were evaluated by histological analyses. The brains of mice were analyzed for: 1) Neurosteroid (Progesterone, Testosterone, 17β-estradiol) concentrations; 2) gene expressions of cytokines and neurosteroid receptors by reverse transcription polymerase chain reaction, and 3) quantitative determination of D-Asp using liquid chromatography-tandem mass spectrometry. Further, some inflammatory cytokines and matrix metalloproteinase-2 (MMP-2) were identified in the mouse serum using enzyme-linked immunosorbent assay kits. Results: Our findings demonstrated that after D-Asp was administered, it was taken up and accumulated within the brain. Further, IP injection of D-Asp had more beneficial effects on EAE severity than oral gavage. The concentration of the testosterone and 17β-estradiol in D-Asp-IP group was significantly higher than that of the control group. There were no significant differences in the gene expression of cytokine and neurosteroid receptors between control, D-Asp-IP, and D-Asp-Oral groups. However, IP treatment with D-Asp significantly reduced C-C motif chemokine ligand 2 and MMP-2 serum levels compared to control mice. Conclusion: IP injection of D-Asp had more beneficial effects on EAE severity, neurosteroid induction and reduction of inflammatory mediators than oral gavage.


2020 ◽  
Vol 10 (4) ◽  
pp. 355-363
Author(s):  
Mohaddese Mahboubi ◽  
Leila Mohammad Taghizadeh Kashani

Background: In Iranian Traditional Medicine, Boswellia serrata oleo-gum resins were used for the treatment of "Nisyan". "Nisyan" was equivalent to a reduction of memory or forgetfulness. Objective: This review evaluates the traditional believes of B. serrata and memory and its effectiveness on memory loss. Methods: We extracted all traditional and modern information on B. serrata oleo-gum resin preparations and memory from scientific accessible resources (Google Scholar, PubMed, Springer, Science direct, Wiley), non-accessible resources and traditional books. Results: In traditional manuscripts, "Nisyan" is equal to memory loss in modern medicine and was believed to happen as the result of pouring the waste materials into the brain. Traditional practitioners treated "Nisyan" by inhibition of waste production in the brain or cleaning the brain from waste materials. They recommended using the plants with warming effects on the brain. It was believed that B. serrata had beneficial effects on memory functions and its memory enhancing effects have been the subject of pharmacological and clinical trial studies. Conclusion: Despite some documents on the effectiveness of B. serrata oleo-gum-resin on memory functions, there is gap between these investigations, especially in pregnant and nursing mothers. More investigations with large clinical trials are required to complete flaw in order to improve the therapeutic applications of B. serrata on memory functions.


Author(s):  
Joshua May

Empirical research apparently suggests that emotions play an integral role in moral judgment. The evidence for sentimentalism is diverse, but it is rather weak and has generally been overblown. There is no evidence that our moral concepts themselves are partly composed of or necessarily dependent on emotions. While the moral/conventional distinction may partly characterize the essence of moral judgment, moral norms needn’t be backed by affect in order to transcend convention. Priming people with incidental emotions like disgust doesn’t make them moralize actions. Finally, moral judgment can only be somewhat impaired by damage to areas of the brain that are generally associated with emotional processing (as in acquired sociopathy and frontotemporal dementia). While psychopaths exhibit both emotional and rational deficits, the latter alone can explain any minor defects in moral cognition.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3370
Author(s):  
Emmanouil-George C. Tzanakakis ◽  
Evangelos Skoulas ◽  
Eudoxie Pepelassi ◽  
Petros Koidis ◽  
Ioannis G. Tzoutzas

Lasers have been well integrated in clinical dentistry for the last two decades, providing clinical alternatives in the management of both soft and hard tissues with an expanding use in the field of dental materials. One of their main advantages is that they can deliver very low to very high concentrated power at an exact point on any substrate by all possible means. The aim of this review is to thoroughly analyze the use of lasers in the processing of dental materials and to enlighten the new trends in laser technology focused on dental material management. New approaches for the elaboration of dental materials that require high energy levels and delicate processing, such as metals, ceramics, and resins are provided, while time consuming laboratory procedures, such as cutting restorative materials, welding, and sintering are facilitated. In addition, surface characteristics of titanium alloys and high strength ceramics can be altered. Finally, the potential of lasers to increase the adhesion of zirconia ceramics to different substrates has been tested for all laser devices, including a new ultrafast generation of lasers.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Conor McQuaid ◽  
Molly Brady ◽  
Rashid Deane

Abstract Background SARS-CoV-2, a coronavirus (CoV), is known to cause acute respiratory distress syndrome, and a number of non-respiratory complications, particularly in older male patients with prior health conditions, such as obesity, diabetes and hypertension. These prior health conditions are associated with vascular dysfunction, and the CoV disease 2019 (COVID-19) complications include multiorgan failure and neurological problems. While the main route of entry into the body is inhalation, this virus has been found in many tissues, including the choroid plexus and meningeal vessels, and in neurons and CSF. Main body We reviewed SARS-CoV-2/COVID-19, ACE2 distribution and beneficial effects, the CNS vascular barriers, possible mechanisms by which the virus enters the brain, outlined prior health conditions (obesity, hypertension and diabetes), neurological COVID-19 manifestation and the aging cerebrovascualture. The overall aim is to provide the general reader with a breadth of information on this type of virus and the wide distribution of its main receptor so as to better understand the significance of neurological complications, uniqueness of the brain, and the pre-existing medical conditions that affect brain. The main issue is that there is no sound evidence for large flux of SARS-CoV-2 into brain, at present, compared to its invasion of the inhalation pathways. Conclusions While SARS-CoV-2 is detected in brains from severely infected patients, it is unclear on how it gets there. There is no sound evidence of SARS-CoV-2 flux into brain to significantly contribute to the overall outcomes once the respiratory system is invaded by the virus. The consensus, based on the normal route of infection and presence of SARS-CoV-2 in severely infected patients, is that the olfactory mucosa is a possible route into brain. Studies are needed to demonstrate flux of SARS-CoV-2 into brain, and its replication in the parenchyma to demonstrate neuroinvasion. It is possible that the neurological manifestations of COVID-19 are a consequence of mainly cardio-respiratory distress and multiorgan failure. Understanding potential SARS-CoV-2 neuroinvasion pathways could help to better define the non-respiratory neurological manifestation of COVID-19.


2021 ◽  
Vol 11 (15) ◽  
pp. 7120
Author(s):  
Mirko Pesce ◽  
Irene La Fratta ◽  
Teresa Paolucci ◽  
Alfredo Grilli ◽  
Antonia Patruno ◽  
...  

The beneficial effects of exercise on the brain are well known. In general, exercise offers an effective way to improve cognitive function in all ages, particularly in the elderly, who are considered the most vulnerable to neurodegenerative disorders. In this regard, myokines, hormones secreted by muscle in response to exercise, have recently gained attention as beneficial mediators. Irisin is a novel exercise-induced myokine, that modulates several bodily processes, such as glucose homeostasis, and reduces systemic inflammation. Irisin is cleaved from fibronectin type III domain containing 5 (FNDC5), a transmembrane precursor protein expressed in muscle under the control of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). The FNDC5/irisin system is also expressed in the hippocampus, where it stimulates the expression of the neurotrophin brain-derived neurotrophic factor in this area that is associated with learning and memory. In this review, we aimed to discuss the role of irisin as a key mediator of the beneficial effects of exercise on synaptic plasticity and memory in the elderly, suggesting its roles within the main promoters of the beneficial effects of exercise on the brain.


Sign in / Sign up

Export Citation Format

Share Document